COUNTY OF OXFORD

2022 DUE DILIGENCE MONITORING PROGRAMS OXFORD COUNTY CLOSED LANDFILL SITES

JANUARY 16, 2023

2022 DUE DILIGENCE MONITORING PROGRAMS OXFORD COUNTY CLOSED LANDFILL SITES

COUNTY OF OXFORD

PROJECT NO.: 191-06761-02 DATE: JANUARY 16, 2023

WSP 1821 PROVINCIAL ROAD WINDSOR, ON CANADA N8W 5V7

T: +1 519 974-5887 F: +1 519 974-5175 WSP.COM

January 16, 2023

COUNTY OF OXFORD Supervisor of Waste Management Oxford County 21 Reeve St., PO Box 1614 Woodstock, ON, N4S 7Y3

Attention: Pamela Antonio, MPA, BES

Dear Ms. Antonio,

Subject: 2022 Due Diligence Monitoring Programs, Oxford County

We are pleased to forward our report documenting the results of the 2022 Due Diligence Monitoring Programs for two (2) closed landfill sites in Oxford County.

The report provides a summary of the drilling and monitoring programs completed as part of the 2022 due diligence monitoring at the Blandford-Blenheim and Gunn's Hill Closed Landfill Sites. The report includes all details of the work program completed; presentation and discussion of the results of the monitoring completed; and conclusions and recommendations. Technical data are appended.

We trust that this information is sufficient for your current needs. If you have any questions or require further information, please contact us.

Yours sincerely,

Albert Siertsema, P.Eng., PMP

Project Engineer

WSP ref.: 191-06761-02

SIGNATURES

PREPARED BY

Jenna McVitty, M.A.Sc., P.Eng.

Project Engineer, Earth & Environment

REVIEWED BY

Albert Siertsema, P.Eng., PMP

Project Engineer, Earth & Environment

WSP Canada Inc. ("WSP") prepared this report solely for the use of the intended recipient, COUNTY OF OXFORD, in accordance with the professional services agreement between the parties. In the event a contract has not been executed, the parties agree that the WSP General Terms for Consultant shall govern their business relationship which was provided to you prior to the preparation of this report.

The report is intended to be used in its entirety. No excerpts may be taken to be representative of the findings in the assessment.

The conclusions presented in this report are based on work performed by trained, professional and technical staff, in accordance with their reasonable interpretation of current and accepted engineering and scientific practices at the time the work was performed.

The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation, using investigation techniques and engineering analysis methods consistent with those ordinarily exercised by WSP and other engineering/scientific practitioners working under similar conditions, and subject to the same time, financial and physical constraints applicable to this project.

WSP disclaims any obligation to update this report if, after the date of this report, any conditions appear to differ significantly from those presented in this report; however, WSP reserves the right to amend or supplement this report based on additional information, documentation or evidence.

WSP makes no other representations whatsoever concerning the legal significance of its findings.

The intended recipient is solely responsible for the disclosure of any information contained in this report. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report.

WSP has provided services to the intended recipient in accordance with the professional services agreement between the parties and in a manner consistent with that degree of care, skill and diligence normally provided by members of the same profession performing the same or comparable services in respect of projects of a similar nature in similar circumstances. It is understood and agreed by WSP and the recipient of this report that WSP provides no warranty, express or implied, of any kind. Without limiting the generality of the foregoing, it is agreed and understood by WSP and the recipient of this report that WSP makes no

representation or warranty whatsoever as to the sufficiency of its scope of work for the purpose sought by the recipient of this report.

In preparing this report, WSP has relied in good faith on information provided by others, as noted in the report. WSP has reasonably assumed that the information provided is correct and WSP is not responsible for the accuracy or completeness of such information.

Benchmark and elevations used in this report are primarily to establish relative elevation differences between the specific testing and/or sampling locations and should not be used for other purposes, such as grading, excavating, construction, planning, development, etc.

WSP disclaims any responsibility for consequential financial effects on transactions or property values, or requirements for follow-up actions /or costs.

Overall conditions can only be extrapolated to an undefined limited area around these testing and sampling locations. The conditions that WSP interprets to exist between testing and sampling points may differ from those that actually exist. The accuracy of any extrapolation and interpretation beyond the sampling locations will depend on natural conditions, the history of Site development and changes through construction and other activities. In addition, analysis has been carried out for the identified chemical and physical parameters only, and it should not be inferred that other chemical species or physical conditions are not present. WSP cannot warrant against undiscovered environmental liabilities or adverse impacts off-Site.

The original of this digital file will be kept by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.]

This limitations statement is considered an integral part of this report.

TABLE OF CONTENTS

1	INTRODUCTION	1
2	BLANDFORD-BLENHEIM LANDFILL	1
2.1	Gas Probe and Monitoring Well Installation	2
2.2	Monitoring Program and Results	3
2.2.1	Landfill Gas	4
2.2.2	Surface Water	4
2.2.3	Groundwater	5
2.2.4	Private Well	8
3	GUNN'S HILL LANDFILL	8
3.1	Gas Probe Installation Program	
3.2	Monitoring Program and Results	9
3.2.1	Landfill Gas	
3.2.2	Seep Inspection / Surface Water	11
3.2.3	Private Wells	11
4	CONCLUSIONS AND RECOMMENDATIONS	12
5	REFERENCES	13

TABLE 1	GROUNDWATER CHEMISTRY RESULTS
TABLE 2	SUMMARY OF GROUNDWATER DUPLICATE SAMPLE RESULTS
TABLE 3	SURFACE WATER CHEMISTRY RESULTS
TABLE 4	SUMMARY OF SURFACE WATER DUPLICATE SAMPLE RESULTS
TABLE 5	LANDFILL GAS MEASUREMENTS AND WATER LEVEL ELEVATIONS
TABLE 6	GUIDELINE B-7 COMPLIANCE

FIGURES

FIGURE 1 SITE LOCATION MAP

FIGURE 2-1 BLANDFORD-BLENHEIM CLOSED LANDFILL SITE PLAN

FIGURE 2-2 BLANDFORD-BLENHEIM CLOSED LANDFILL PRIVATE WELL AND SURFACE WATER SAMPLING LOCATIONS

FIGURE 2-3 BLANDFORD-BLENHEIM CLOSED LANDFILL GROUNDWATER ELEVATIONS – APRIL 2022

FIGURE 3-1 GUNN'S HILL CLOSED LANDFILL SITE PLAN

FIGURE 3-2 GUNN'S HILL CLOSED LANDFILL PRIVATE WELL SAMPLING LOCATIONS

APPENDICES

A BOREHOLE LOGS

A-1 Blandford-Blenheim Landfill

A-2 Gunn's Hill Landfill

B LABORATORY CERTIFICATES OF ANALYSIS

1 INTRODUCTION

WSP Canada Inc. (WSP) was retained by Oxford County to conduct an inventory of seven closed municipal landfill sites located throughout Oxford County. It is our understanding that this undertaking was initiated by the County for due diligence purposes.

The main project objectives were as follows:

- Review and catalogue the historical records and reports, search for and collect data from pertinent government agencies (e.g. Ministry of Environment, Conservation and Parks Freedom of Information Requests) and conduct site visits at the seven closed landfills owned by Oxford County;
- Report on the condition of the closed landfills' records, identify data gaps and potential for risk for each of the seven closed landfills; and
- Compile all findings and recommendations in a single report.

A single report, submitted to Oxford County in November 2019, was prepared based on all the information obtained during the records review and site visits. The report endeavoured to develop an understanding of the potential risks at each closed landfill site and the possible need for additional works, investigations and/or monitoring.

Based upon the report, Oxford County chose to proceed with recommended medium and high priority action items at the Lakeside, Embro, and Thamesford closed landfills in 2021, followed by Blandford-Blenheim and Gunn's Hill closed landfills in 2022.

A proposal to complete the due diligence monitoring program was submitted to Oxford County on October 20, 2021. This report provides a summary of the drilling and monitoring programs completed as part of the 2022 due diligence monitoring at the Blandford-Blenheim and Gunn's Hill Closed Landfill Sites. The report includes all details of the work program completed; presentation and discussion of the results of the monitoring completed; and conclusions and recommendations.

The locations of the closed landfill sites are provided on Figure 1.

2 BLANDFORD-BLENHEIM LANDFILL

The work program at the Blandford-Blenheim Landfill Site consisted of the following medium and high priority items identified during the inventory of the closed municipal landfills in Oxford County (WSP, 2019):

- Landfill Gas: Installation of a shallow gas probe at the property limit adjacent to the closest residential property (medium priority);
- Surface Water: Initiate a surface water sampling program at locations in the wetland/swampy areas around the
 Site, including an upgradient station off-site to the northwest and a downgradient station within the ponded area in the southeastern corner of the property (medium priority);
- Surface Water: Inspection of the southeastern corner of the property for the existence of a culvert connecting
 the landfill property with the adjoining property (medium priority);

- Groundwater: Drilling and monitoring well installation program at locations around the perimeter of the
 property to determine the shallow soil characteristics and to assess the shallow ground water quality and flow
 direction. Investigate the existing monitoring well observed on site for inclusion into the sampling program
 (medium priority); and
- Contact the neighbouring property to the west to determine information regarding their water use (well type, depth, etc.). Depending on the neighbour's water use, consideration should be given to sampling their water source (high priority).

2.1 GAS PROBE AND MONITORING WELL INSTALLATION

The drilling program was completed on January 18 and 19, 2022 by Direct Environmental Drilling using a track-mounted CME 75 equipped with 108 mm (4 ¼ inch) inside diameter, 215 (8 ½ inch) outside diameter hollow stem augers. Drill cuttings were contained on-site in the vicinity of the borehole location. WSP field staff were on-site to oversee the drilling and monitoring well installation activities. Borehole logs are provided in Appendix A-1.

Four boreholes were advanced through the overburden to depths ranging from 4.57 to 8.23 meters using 108 mm (4½ inch) inside diameter hollow stem augers and a 51 mm (2 inch) diameter split spoon sampler. Soil samples from the borehole drilling were logged in the field and then returned to the office for detailed logging and review by senior staff.

The gas probe was constructed of 51 mm (2 inch) diameter PVC riser pipe and slotted 3.05 m (10 foot) screen. The borehole annulus around the well screen was filled with No. 2 clean silica sand to 0.46 m above the well screen to provide a filter pack. The remainder of the borehole annulus was sealed with bentonite to surface. A lockable protective steel casing was installed at the surface.

The groundwater monitoring wells were constructed of 51 mm (2 inch) diameter PVC riser pipe and slotted 1.52 m (5 foot) screens, with 0.15 m (6 inch) slotted cone tips (sumps). The borehole annulus around the each well screen was filled with No. 2 clean silica sand to 0.61 m above the well screen to provide a filter pack. The remainder of each borehole annulus was sealed with bentonite to surface. Lockable protective steel casings were installed at the surface, for each monitoring well.

Monitor construction details for the gas probe and monitoring wells are summarized below:

Manten	Monitor Diameter	Ground Surface	Screened Interval	Filter Pack	Seal
Monitor Designation			mbgs	mbgs	mbgs
BB-GP1	51	304.20	1.52 – 4.57	1.07 – 4.57	0.00 - 1.07
BB-MW1	51	299.27	5.72 – 7.39	5.11 – 7.44	0.00 - 5.11
BB-MW2	51	302.97	6.45 – 8.13	5.84 – 8.23	0.00 - 5.84
BB-MW3	51	304.44	6.43 – 8.10	5.82 – 8.23	0.00 - 5.82

Notes: m/

mASL – metres above sea level.

mbgs - metres below ground surface

The monitors were installed for the purpose of assessing landfill gas migration from the refuse and to assess the shallow groundwater quality and flow direction. The gas probe (BB-GP1) was installed within the unsaturated zone northwest of the refuse and east of the adjacent residential property. The shallow groundwater monitors were installed near the northwest, southwest and eastern boundaries of the Site, as shown on Figure 2-1.

A Ministry of the Environment, Conservation and Parks (MECP) well tag was affixed to one of the monitor installations and a single cluster well record was submitted to the MECP in accordance with O.Reg. 903. A survey of the reference elevations for the new monitors was completed by Oxford County.

Following completion of the new monitoring wells, dedicated sampling equipment was installed. The wells were developed to promote hydraulic connection to the geologic formations, to remove fine-grained material from the area of the well screen, and to ensure that the adjacent groundwater was representative of natural conditions.

2.2 MONITORING PROGRAM AND RESULTS

The monitoring program for the Blandford-Blenheim Landfill was based upon the recommendations that were provided in the Inventory of Closed Municipal Landfill Sites Report, completed by WSP in November 2019. These tasks included the following monitoring events:

- Gas monitoring of probe BB-GP1, BB-MW1, BB-MW2, BB-MW3, BB-BH1-1, and BB-BH1-2 on February 15, July 13, October 18, and December 12, 2022;
- Surface water monitoring at BB-SW1, BB-SW2, and BB-SW3 on March 22 and October 18, 2022;
- Groundwater sampling at BB-MW1, BB-MW2, BB-MW3, BB-BH1-1, and BB-BH1-2 in April and October/November 2022;
- Groundwater level monitoring at all on-site monitors during each monitoring event; and
- Private well monitoring at a residential property located at 846635 Township Road 9 (BB-P1) in April 2022.

The location of the landfill gas monitoring probe is shown on Figure 2-1. The gas monitoring was completed using an Elkins Earthworks Envision Landfill Gas Monitor. A groundwater level measurement was collected immediately following the gas measurement within the gas probe.

Surface water sampling was completed during the spring and fall at three surface water locations, as shown on Figures 2-1 and 2-2. It is noted that the each of the locations were not flowing (stagnant) or dry at the time of the sampling events. The samples were obtained directly from the surface water source at each monitoring location and submitted to SGS Canada Inc., located in Lakefield, Ontario.

Groundwater monitoring and sampling was completed during the spring and fall at the five groundwater monitoring wells, as shown on Figures 2-1 and 2-2. The samples were submitted to SGS Canada Inc. located in Lakefield, Ontario.

The private well sampling was completed during the spring at the residential property to the northwest of the landfill property, as shown on Figure 2-1. In discussions with the private well owner, the well was reported to be a dug well with a depth of approximately 40 foot (12.2 m). The presumed water well record was located and obtained from the MECP well record database, which is a database providing information from well contractors as prescribed by O.Reg. 903 and stored in the Water Well Information System (WWIS). The presumed water well record for the private well is provided in Appendix A-1. The owner mentioned that the well had been cleaned (sediment removal)

within the last five years. The sample was obtained from a tap located outside of the corner of the garage, prior to any water treatment systems (e.g. UV treatment, filters, softeners, etc.).

2.2.1 LANDFILL GAS

As identified in the Inventory of Closed Municipal Landfill Sites Report, completed by WSP in November 2019, monitoring for combustible gas was completed at various times (at least once each season) for a year. Monitoring occurred during the late winter/early spring (February 15, 2022), summer (July 13, 2022), fall (October 18, 2022) and early winter (December 12, 2022). Monitoring occurred in February and December 2022 to correspond to frozen ground conditions, as landfill gas preferentially migrates horizontally when the ground is frozen and cannot escape vertically in the vicinity of the waste. The combustible gas monitoring results are presented in Table 5.

Groundwater elevations were completed to ensure that the screen of gas probe BB-GP1 remained unsaturated, to allow the gas to accumulate in the gas probe. The monitor's well screen was not submerged for any of the monitoring events. Landfill gas monitoring and groundwater elevations were also collected within monitoring wells BB-MW1, BB-MW2 and BB-MW3, although these monitors' well screens were submerged for each of the monitoring events in 2022. Landfill gas monitoring and groundwater elevations were also collected within existing monitoring wells BB-BH1-1 and BB-BH1-2, but as the monitoring well details are unknown for these wells, it cannot be confirmed if the monitors' well screens were submerged or not.

During both frozen and unfrozen ground conditions, combustible gas was not detected at any of the monitors during the monitoring period. These results indicate that landfill gas does not appear to be present or migrating away from the property boundary, particularly toward the residential property to the northwest. Given the age and size of the landfill, it is unlikely that landfill gas will pose a risk to neighbouring properties. As such, further landfill gas monitoring is not recommended.

2.2.2 SURFACE WATER

SURFACE WATER FLOW

During the March 2022 sampling event at the Site, there was no apparent surface water flow (stagnant) at the designated monitoring stations. During the fall sampling event in October 2022, each of the stations were completely dry.

Some surface drainage from the refuse mound appears to collect in the wetland/swampy area in the southeastern corner of the Site (BB-SW2), which is assumed to drain to the adjoining swampland to the east (BB-SW3). An inspection of the southeastern corner of the property was also completed, to attempt to find the culvert that is presumed to connect the landfill property with the adjoining property. This culvert was unable to be found.

Station BB-SW1 is located within a wetland/swampy area to west of the Site and represents an upgradient location. There was also no surface water flow at this upgradient location in 2022.

SURFACE WATER QUALITY

Project quality assurance and control (QA/QC) was performed through each stage of sampling and analysis. QA/QC during data collection was ensured through the use of standard monitoring protocols and procedures. Field

equipment was calibrated regularly. Water samples collected in the field were placed in coolers with ice to maintain a constant temperature of about 4°C and delivered or couriered to the laboratory at the end of the day.

Analytical results for the field QA/QC sampling completed during the surface water sampling program were evaluated for the relative percent difference (RPD) of parameter concentrations. For concentrations greater than five times the reported detection limit (RDL), a concentration difference of less than or equal to 20% was deemed acceptable. For concentrations less than or equal to five times the RDL, a concentration difference of equal to or less than twice the RDL was deemed acceptable.

Laboratory reports were reviewed as part of the laboratory QA/QC program. The surface water duplicate sample results are provided in Table 4. The RPDs between the blind duplicates and original samples collected on March 22, 2022, were acceptable for the tested constituents, with the exception of cadmium (33% RPD) and chromium (26% RPD) at station BB-SW2.

The laboratory was consulted to validate the original and duplicate results for the samples noted above. The laboratory's response indicated that these concentrations were within acceptable laboratory QA/QC ranges and the chemical results stand.

The surface water samples were analyzed for parameters that are typically associated with municipal landfills, as listed in Schedule 5, Column 3 of the Landfill Standards guideline (MECP, 2012). Copies of the laboratory certificates of analysis are provided in Appendix B, with summarized field and laboratory results presented in Table 3.

Concentrations of typical landfill related parameters were compared between downgradient surface water quality at BB-SW2 and BB-SW3 to upgradient surface water quality at BB-SW1. In the spring of 2022, parameter concentrations generally increased in concentration moving from BB-SW1 to BB-SW2 and again to BB-SW3, indicating that the landfill may be influencing surface water quality. However, it is noted that chloride concentrations were lower at downstream BB-SW2 compared to upstream BB-SW1. Surface water was unable to be sampled in October 2022 due to dry conditions at the three stations. Concentrations of phenols at BB-SW2, un-ionized ammonia at BB-SW3, and iron at BB-SW2 and BB-SW3 exceeded their respective Provisional Water Quality Objective (PWQO) in March 2022. It is noted that further downstream at BB-SW3 (located on the adjoining swampland to the east) the phenols concentration no longer exceeded the PWQO.

Although several parameters exceeded the PWQO at the downstream surface water locations, it is plausible that these exceedances were the result of the stagnant wetland conditions at these locations. The general increase of parameter concentrations from the upstream to downstream locations does suggest that the landfill may be partially influencing surface water quality. Nonetheless, as the surface water stations were ephemeral in 2022 (dry in the fall), the downstream impact appears to be minimal. Additional surface water monitoring is recommended to corroborate these ephemeral conditions, and to determine whether the landfill is impacting downstream surface water quality.

2.2.3 GROUNDWATER

GROUNDWATER FLOW

According to the local Source Water Protection assessments, groundwater flow in the vicinity of the of the Site is inferred to flow towards the east to southeast. Based on the groundwater elevation measurements completed, the

groundwater flow direction of the shallow overburden matches the Source Water Protection assessment. The groundwater table elevations measured in April 2022 and the interpreted shallow groundwater table contours are presented on Figure 2-3.

As per the inferred groundwater flow direction, the groundwater quality observed at monitoring well BB-MW3 is considered representative of background/upgradient groundwater conditions, while the remaining monitoring wells are considered downgradient of the Site.

GROUNDWATER QUALITY

Project QA/QC was performed through each stage of sampling and analysis. QA/QC during data collection was ensured through the use of standard monitoring protocols and procedures. Field equipment was calibrated regularly. Water samples collected in the field were placed in coolers with ice to maintain a constant temperature of about 4°C and delivered or couriered to the laboratory at the end of the day.

Analytical results for the field QA/QC sampling completed during the groundwater sampling program were evaluated for the relative percent difference (RPD) of parameter concentrations. For concentrations greater than five times the reported detection limit (RDL), a concentration difference of less than or equal to 20% was deemed acceptable. For concentrations less than or equal to five times the RDL, a concentration difference of equal to or less than twice the RDL was deemed acceptable.

Laboratory reports were reviewed as part of the laboratory QA/QC program. The groundwater duplicate sample results are provided in Table 2. The RPDs between the blind duplicates and original samples collected on April 11 and October 18, 2022 were acceptable for the tested constituents, with the exception of chromium (36% RPD) at BB-P1 in April 2022. The laboratory was consulted to validate the original and duplicate results for the samples noted above. The laboratory's response indicated that these concentrations were within acceptable laboratory QA/QC ranges and the chemical results stand.

The groundwater samples were analyzed for parameters that are typically associated with municipal landfills as listed in Schedule 5, Column 1 of the Landfill Standards guideline (MECP, 2012). Copies of the laboratory certificates of analysis are provided in Appendix B, with summarized field and laboratory results presented in Table 1.

Parameter concentrations in the groundwater samples collected were generally highest at monitor BB-BH1-2 located within the landfill footprint, followed by concentrations at monitor BB-MW1 located downstream in the east corner of the Site. Concentrations at monitors BB-BH1-1 and BB-MW2 were also generally elevated compared to background concentrations at monitor BB-MW3, but less elevated than at monitors BB-BH1-2 and BB-MW1. Manganese concentrations at BB-BH1-1 were similar to BB-BH1-2 in April and greater than BB-BH1-2 in October/November.

Concentrations of volatile organic compounds (VOCs) were detected within the groundwater at monitor BB-BH1-2 for benzene, toluene and 1,4-dichlorobenzene during both 2022 monitoring events. VOCs were not detected in any of the other groundwater monitors.

It is noted that nested monitors BB-BH1-1 and BB-BH1-2 are existing monitoring wells within the landfill footprint, that were identified during the inventory of the closed municipal landfills in Oxford County (WSP, 2019). Well details were not available for these monitoring wells, but dedicated sampling equipment was installed by WSP in the spring of 2022 and the wells were developed to promote hydraulic connection to ensure that the adjacent

groundwater was representative of natural conditions. Well depths were recorded after development of these wells. It is apparent that monitor BB-BH1-2 is a shallow monitoring well, likely installed within the refuse, and is representative of the leachate quality at the Site. Monitor BB-BH1-1 is a deeper monitoring well, assumed to be installed below the refuse. Therefore, the elevated parameter concentrations at monitor BB-BH1-2 can be considered representative of leachate at the Site.

ONTARIO DRINKING WATER QUALITY STANDARDS

A review of the groundwater quality results indicates that all the parameters analyzed were within the ODWQS during 2022, with the exception of:

- Total dissolved solids (TDS), dissolved organic carbon (DOC), alkalinity and iron at monitors BB-MW1 and BB-BH1-2;
- Manganese at monitors BB-MW1, BB-BH1-1 and BB-BH1-2; and
- Benzene and 1-4-dichlorobenzene at BB-BH1-2.

All of the above exceedances occurred during both the spring and fall monitoring events, with the exception of alkalinity at BB-MW1 which only exceeded in April 2022.

As discussed above, BB-BH1-2 is likely installed within the refuse and is representative of the leachate quality at the Site.

TDS, DOC, iron, manganese and 1,4-dichlorobenzene have objectives or guidelines related to the aesthetic quality of the water and are not health related. Alkalinity is an operational guideline and is also not health related.

GUIDELINE B-7 COMPLIANCE ASSESSMENT

Guideline B-7 (GB-7) was established by the MECP as a mechanism to assess the acceptable level of leachate impacts on the groundwater system. Guideline B-7 is applied to groundwater quality at the property boundary, and is intended to protect both existing and potential reasonable uses of the groundwater on adjacent properties. The Guideline states that, for non-health related parameters, the impact from the landfill should not raise the concentration by more than half the difference between the background concentration and the ODWQS. For health related parameters, the impact from the landfill should not raise the concentration by more than quarter the difference between the background concentration and the ODWQS.

GB-7 criteria were calculated for parameters that have ODWQS. The groundwater chemistry results from background monitor BB-MW3 were used as reference concentrations for the calculations.

Table 6 provides a comparison of the calculated Guideline B-7 criteria and downgradient shallow wells on Site.

In summary, concentrations at the landfill property boundary complied with the GB-7 criteria, with the exception of:

- TDS at monitors BB-MW1 and BB-MW2 in April and October 2022;
- DOC, alkalinity, barium at monitor BB-MW1 in April and October 2022; and
- Iron and manganese at monitor BB-MW1 in April and October 2022 and monitor BB-MW2 in April 2022.

It is noted that most of these parameters have objectives or guidelines related to the aesthetic quality (TDS, DOC, iron and manganese) or operational treatment (alkalinity) of the water, and are not health related. Barium, which is

a health related criterion, exceeded the GB-7 criteria at BB-MW1 in April and October 2022. The concentration of barium detected at BB-MW1, however, was below the ODWQS criteria.

Based on the groundwater quality results, there is evidence of landfill impact to the shallow groundwater at the Site, particularly at eastern boundary well BB-MW1. This shallow groundwater may also influence the surface quality within the wetland areas to the east of the Site. It is noted that the adjacent property directly to the east of the Site was confirmed to be owned by Oxford County (WSP, 2019), and could be considered a buffer for landfill impacts to the east. If further lands to the east/southeast become available, the County may want to consider purchasing them for additional buffer and natural attenuation of shallow groundwater and surface water. Continued groundwater monitoring of the wells on-site may be prudent, to monitor for any changing parameter concentration trends.

2.2.4 PRIVATE WELL

Project QA/QC was performed through each stage of sampling and analysis. QA/QC during data collection was ensured through the use of standard monitoring protocols and procedures. Field equipment was calibrated regularly. Water samples collected in the field were placed in coolers with ice to maintain a constant temperature of about 4°C and delivered or couriered to the laboratory at the end of the day.

The private well groundwater sample was analyzed for parameters that are typically associated with municipal landfills as listed in Schedule 5, Column 1 of the Landfill Standards guideline (MECP, 2012). Copies of the laboratory certificates of analysis are provided in Appendix B, with summarized field and laboratory results presented in Table 1.

A review of the groundwater quality results indicates that all the parameters analyzed were within the Ontario Drinking Water Quality Standards (ODWQS) (MECP, revised June 2006). Concentrations of volatile organic compounds were not detected in the groundwater sample.

In summary, groundwater quality within the private well tested did not show evidence of a leachate influence. Given these results, further groundwater monitoring of the private water well is not recommended.

3 GUNN'S HILL LANDFILL

The work program at the Gunn's Hill Landfill Site consisted of the following priority items identified during the inventory of the closed municipal landfills in Oxford County (WSP, 2019):

- Landfill Gas: Installation of shallow gas probes at the property limits adjacent to the residential properties to the west and east (medium priority);
- Shallow Groundwater / Surface Water: Inspection of the south/southwest slope of the landfill for leachate seeps
 during periods of high ground saturation, such as late winter, early spring and late fall. If leachate seeps are
 observed, initiate a sampling program that includes sampling the seeps and the upstream and downstream
 wetland areas, to the south and west, respectively (high priority); and
- Contact the neighbouring properties to the west and east to determine information regarding their water use (well type, depth etc.). Depending on the neighbour's water use, consideration should be given to sampling their water source (medium priority).

3.1 GAS PROBE INSTALLATION PROGRAM

The drilling program was completed on January 19, 2022 by Direct Environmental Drilling using a track-mounted CME 75 equipped with 108 mm (4 ¼ inch) inside diameter, 215 (8 ½ inch) outside diameter hollow stem augers. Drill cuttings were contained on-site in the vicinity of the borehole location. WSP field staff were on-site to oversee the drilling and monitoring well installation activities. Borehole logs are provided in Appendix A-2.

Two boreholes were advanced through the overburden to a depth of 3.05 meters using 108 mm (4½ inch) inside diameter hollow stem augers and a 51 mm (2 inch) diameter split spoon sampler. Soil samples from the borehole drilling were logged in the field and then returned to the office for detailed logging and review by senior staff.

The gas probes were constructed of 51 mm (2 inch) diameter PVC riser pipe and slotted 2.13 m (7 foot) screens. The borehole annulus around each well screen was filled with No. 2 clean silica sand to 0.30 m above the well screen to provide a filter pack. The remainder of the borehole annulus was sealed with bentonite to surface. A lockable protective steel casing was installed at the surface.

Monitor construction details for the gas probes are summarized below:

	Monitor Diameter	Ground Surface	Screened Interval	Filter Pack	Seal	
Monitor Designation	mm	mASL	mbgs	mbgs	mbgs	
GH-GP1	51	319.59	0.91 - 3.05	0.61 - 3.05	0.00 - 0.61	
GH-GP2	51	312.57	0.91 – 3.05	0.61 – 3.05	0.00 - 0.61	

Notes: mASL – metres above sea level. mbgs – metres below ground surface

The monitors were installed for the purpose of assessing landfill gas migration from the refuse. The monitors were installed on the property boundary within the unsaturated zone on the east and west sides of the refuse mound, adjacent to the closest residential properties, as shown on Figures 3-1 and 3-2.

A survey of the reference elevations for the new monitors was completed by Oxford County.

3.2 MONITORING PROGRAM AND RESULTS

The monitoring program for the Gunn's Hill Landfill was based upon the recommendations that were provided in the Inventory of Closed Municipal Landfill Sites Report, completed by WSP in November 2019. These tasks included the following monitoring events:

- Gas monitoring of probe GH-GP1 and GH-GP2 on February 15, July 13, October 17, and December 12, 2022;
- Water level monitoring within the gas probes during gas monitoring events;
- Inspection of the south/southwest slopes of the landfill for seeps on February 15, March 22, March 30, April 11, July 13, October 17, and December 12; and

Private well monitoring at three residential properties located on Gunn's Hill Road, at property numbers 445300 (GH-P1), 445297 (GH-P2) and 445262 (GH-P3A and GH-P3B).

The locations of the landfill gas monitoring probes are illustrated on Figures 3-1 and 3-2. The gas monitoring was completed using an Elkins Earthworks Envision Landfill Gas Monitor. Groundwater levels were collected immediately following the gas measurements within the gas probes.

The private well sampling was completed during the spring at the residential properties adjacent to the landfill property, as shown on Figure 3-1. In discussions with the private well owners, well construction details (well type, depth, etc.) were not readily available or known, but each well owner was willing to provide access to sample each well. The presumed water well records were located and obtained from the MECP well record database, following the sampling. The presumed water well records for the private wells are provided in Appendix A-2, and general construction details are summarized in the table below:

Water Well				Depth Co	ompleted
Record Designation	WSP Designation	Address	Date Constructed	feet bgs	mbgs
4703235	GH-P1	445300 Gunn's Hill Road	August 17, 1971	213	64.9
4705875	GH-P2	445297 Gunn's Hill Road	April 24, 1986	248	75.6
7250526 (A188068)	GH-P3A	445262 Gunn's Hill Road	September 21, 2015	48	14.6
4706517	GH-P3B		December 6, 1989	40	12.2

The samples were obtained from the residences prior to any water treatment systems (e.g. UV treatment, filters, softeners, etc.).

3.2.1 LANDFILL GAS

As identified in the Inventory of Closed Municipal Landfill Sites Report, completed by WSP in November 2019, monitoring for combustible gas was completed at various times (at least once each season) for a year. Monitoring occurred during the late winter/early spring (February 15, 2022), summer (July 13, 2022), fall (October 17, 2022) and early winter (December 12, 2022). Monitoring occurred in February and December 2022 to correspond to frozen ground conditions, as landfill gas preferentially migrates horizontally when the ground is frozen and cannot escape vertically in the vicinity of the waste. The combustible gas monitoring results are presented in Table 5.

Groundwater elevations were completed to ensure that the screens of the two probes remained unsaturated to allow the gas to accumulate in the gas probes. The monitor well screens were not submerged during the monitoring events.

During both frozen and unfrozen ground conditions, combustible gas was not detected at monitors GH-GP1 or GH-GP2 during the monitoring period. These results indicate that landfill gas does not appear to be present or migrating towards the residential properties. Given the age and size of the landfill, it is unlikely that landfill gas will pose a risk to neighbouring properties. As such, further landfill gas monitoring is not recommended.

3.2.2 SEEP INSPECTION / SURFACE WATER

As noted earlier, inspection of the south/southwest slopes of the landfill for seeps occurred on February 15, March 22, March 30, July 13, October 17, and December 12. Attempts were made to attend the inspections on dates of high ground saturation (particularly in the spring), to maximize the chances of witnessing any seeps.

During each of these inspections, no seeps were discovered. As such, the surface water quality monitoring program was not initiated. It is noted that any surface water flow through the proposed surface water stations (both upstream and downstream) appears to be very ephemeral. During the inspection of the Site for seeps, no downstream surface water flow was visible from the Site.

Considering the ephemeral surface water flow, very little impact is anticipated from any surface water runoff from the site. Given these results, further surface water monitoring is not recommended.

3.2.3 PRIVATE WELLS

Project QA/QC was performed through each stage of sampling and analysis. QA/QC during data collection was ensured through the use of standard monitoring protocols and procedures. Field equipment was calibrated regularly. Water samples collected in the field were placed in coolers with ice to maintain a constant temperature of about 4°C and delivered or couriered to the laboratory at the end of the day.

Analytical results for the field QA/QC sampling completed during the sampling program were evaluated for the relative percent difference (RPD) of parameter concentrations. For concentrations greater than five times the reported detection limit (RDL), a concentration difference of less than or equal to 20% was deemed acceptable. For concentrations less than or equal to five times the RDL, a concentration difference of equal to or less than twice the RDL was deemed acceptable.

Laboratory reports were reviewed as part of the laboratory QA/QC program. The groundwater duplicate sample results are provided in Table 2. The RPDs between the blind duplicate and original sample collected on April 11, 2022, were acceptable for the tested constituents, with the exception of sulphate (37% RPD) and copper (96%) at GH-P1. The laboratory was consulted to validate the original and duplicate results for the samples noted above. The laboratory's response indicated that these concentrations were within acceptable laboratory QA/QC ranges and the chemical results stand.

The four private well groundwater samples were analyzed for parameters that are typically associated with municipal landfills as listed in Schedule 5, Column 1 of the Landfill Standards guideline (MECP, 2012). Copies of the laboratory certificates of analysis are provided in Appendix B, with summarized field and laboratory results presented in Table 1.

A review of the groundwater quality results indicates that all the parameters analyzed were within the Ontario Drinking Water Quality Standards (ODWQS) (MECP, revised June 2006), with the exception of iron concentrations at each of the private wells, and manganese at GH-P3A. Iron is a naturally occurring parameter in groundwater and commonly exceeds the ODWQS. As iron exceeded the ODWQS at each of the locations at a similar concentration, it is apparent that iron-rich water is prevalent within the background water quality in the area. The ODWQS for this parameter relates to an aesthetic objective for water quality; therefore, it does not represent a health concern. The

manganese concentration at GH-P3A (0.0527 mg/L) was only marginally above the ODWQS of 0.05 mg/L, and also relates to an aesthetic objective for water quality; therefore, it does not represent a health concern.

Concentrations of volatile organic compounds were not detected in the groundwater samples.

The remaining parameter concentrations at GH-P1, GH-P2, GH-3A and GH-3B in April 2022 were relatively similar and below the ODWQS. In summary, groundwater quality within the private wells tested did not show evidence of a leachate influence. Given these results, further groundwater monitoring is not recommended.

4 CONCLUSIONS AND RECOMMENDATIONS

This report provides a summary of the drilling and monitoring programs completed as part of the 2022 due diligence monitoring at the Blandford-Blenheim and Gunn's Hill Closed Landfill Sites

The program was based upon the medium and high potential risks identified in the Inventory of Closed Municipal Landfill Sites Report, completed by WSP in November 2019.

BLANDFORD-BLENHEIM LANDFILL

Potential risks identified for the Blandford-Blenheim Landfill included:

- Landfill Gas (medium priority);
- Surface Water (medium priority);
- Groundwater (medium priority); and
- Private Wells / Domestic Groundwater (high priority).

Based on the monitoring program completed at the Blandford-Blenheim Landfill, the monitoring results do not appear to indicate landfill impacts via landfill gas movement, however continued monitoring is recommended to observe parameter concentration trends of potential historic landfill impacts to the surface water and shallow groundwater to the east of the Site.

GUNN'S HILL LANDFILL

Potential risks identified for the Gunn's Hill Landfill included:

- Landfill Gas (medium priority);
- Shallow Groundwater / Surface Water (high priority); and
- Private Wells / Domestic Groundwater (medium priority).

Based on the monitoring program completed at the Gunn's Hill Landfill, the monitoring results do not appear to indicate landfill impacts via landfill gas movement, leachate seeps (shallow groundwater/surface water) or to domestic well groundwater quality. Given the results presented within this report, further monitoring is not recommended at this time.

5 REFERENCES

- Ministry of the Environment, 1994. Water Management Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of Environment and Energy; July 1994. Reprinted February 1999.
- Ministry of the Environment, 2004. *Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines*. Revised June 2006.
- Ministry of the Environment, 2012. Landfill Standards: A Guideline on the Regulatory and Approval Requirements for New or Expanding Landfilling Sites. January 2012.
- WSP Canada Inc., 2019. Oxford County: Inventory of Closed Municipal Landfill Sites. November 2019.

TABLES

Table 1: Groundwater Chemistry Results Oxford County Closed Landfill Sites

		Blandford-Blenheim Landfill										
		BB-I	/IW1	BB-	MW2	BB-I	MW3	BB-E	BH1-1	BB-E	3H1-2	BB-P1
Parameter	ODWQS	11-Apr-22	18-Oct-22	11-Apr-22	18-Oct-22	11-Apr-22	18-Oct-22	18-Apr-22	25-Nov-22	18-Apr-22	25-Nov-22	11-Apr-22
pH (field - pH units)	6.5 - 8.5 OG	6.98	6.97	6.78	7.25	6.89	7.51	6.89	6.94	6.75	6.65	7.38
Conductivity (field - μS/cm)		1070	1000	595	634	351	382	740	671	2050	2100	527
Temperature (field - °C)	15 AO	8.35	11.10	8.52	10.11	9.25	10.29	9.7	9.60	9.3	9.75	4.58
pH (lab - pH units)	6.5 - 8.5 OG	7.93	8.16	8.13	8.09	8.20	8.16	7.86	7.72	7.15	7.20	8.08
Conductivity (lab - µS/cm)		1190	1080	651	627	381	372	573	687	2110	2100	557
Total Dissolved Solids	500 AO	617	574	420	394	234	206	331	369	780	820	346
Chemical Oxygen Demand		30	23	11	<8	<8	<8	<8	20	116	131	<8
Dissolved Organic Carbon	5 AO	9.3	8	1.1	3	1.3	<1	2	1.8	27	30.5	1.5
Alkalinity	30 - 500 OG	597	498	248	231	213	202	304	334	1150	1070	295
Chloride	250 AO	48	79	27	37	3	0.9	15	15	31	37	2
Sulphate	500 AO	22	24	73	82	7	3.5	12	4	<2	<20	5
Calcium		118	101	90.5	73.6	56.3	52.3	92.4	111	184	195	82.3
Magnesium		45.5	37.4	31.1	23.8	10.9	8.97	18.9	18.4	48.9	40.7	22.4
Sodium	200 AO	35.4	29.0	5.02	3.85	13.2	4.50	4.30	3.90	50.4	31.9	4.94
Potassium		15.4	9.69	1.34	1.16	0.833	0.652	3.81	4.56	70.4	60.7	5.12
Total Kjehldahl Nitrogen		24.6	16.2	<0.5	<0.5	1.6	<0.5	2.46	2.00	122	99.2	<0.5
Ammonia		23.9	15.2	0.2	0.1	<0.1	<0.1	<0.1	1.8	112	100	<0.1
Nitrate	10.0 MAC	<0.06	<0.06	0.70	0.45	0.34	0.32	2.53	0.56	<0.06	<0.06	5.28
Nitrite	1.0 MAC	<0.03	<0.03	0.14	0.11	<0.03	<0.03	<0.03	0.07	<0.3	<0.3	<0.03
Total Phosphorus		0.73	0.26	0.05	<0.03	<0.03	0.06	0.12	0.16	0.60	0.58	<0.03
Phenols		<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	0.008	0.016	<0.002
Arsenic	0.01 MAC	0.0005	0.0003	0.0011	0.0007	0.0009	0.0003	0.0004	0.0004	0.0014	0.0016	<0.0002
Barium	1.0 MAC	0.519	0.358	0.0633	0.0613	0.0104	0.00835	0.0398	0.0561	0.217	0.278	0.0304
Boron	5.0 IMAC	0.176	0.103	0.013	0.007	0.018	0.005	0.125	0.063	0.765	0.750	0.045
Cadmium	0.005 MAC	<0.000003	<0.000003	0.000005	<0.000003	0.000003	0.000010	0.000137	0.000004	0.000003	0.000010	0.000007
Chromium	0.05 MAC	0.00064	0.00044	0.00014	0.00013	0.00057	0.00037	0.00014	0.00019	0.00376	0.00377	0.00096
Copper	1 AO	0.0003	<0.0002	0.0008	<0.0002	0.0011	0.0006	0.0022	0.0010	0.0006	0.0008	0.0048
Iron	0.3 AO	3.84	3.28	0.198	0.095	<0.007	<0.007	0.045	0.08	44.3	73.5	<0.007
Lead	0.010 MAC	<0.00009	<0.00009	0.00019	<0.00009	<0.00009	<0.00009	0.00014	<0.001	<0.00009	<0.001	0.00017
Manganese	0.05 AO	0.0972	0.0636	0.0318	0.0190	0.00477	0.00041	0.657	0.852	0.701	0.548	0.00024
Mercury	0.001 MAC	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Zinc	5.0 AO	0.002	<0.002	0.004	<0.002	0.003	<0.002	0.026	0.011	0.011	0.007	0.218
Benzene (µg/L)	1 MAC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.9	5.7	<0.5
1,4 - Dichlorobenzene (µg/L)	5 MAC, 1 AO	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.6	3.2	<0.5
Dichloromethane (µg/L)	50 MAC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene (µg/L)	60 MAC, 24 AO	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1.2	<0.5
Vinyl Chloride (µg/L)	1 MAC	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

Notes: · All units in mg/L unless otherwise noted

· ODWQS - Ontario Drinking Water Quality Standard (June 2003) · IMAC - Interim Maximum Acceptable Concentration

· Bold values indicate exceedance of ODWQS · All units in mg/L unless otherwise noted

· µS/cm - microSiemens per centimetre

· °C - degrees Celsius

· µg/L - micrograms per litre

· MAC - Maximum Acceptable Concentration

· AO - Aesthetic Objective · OG - Operational Guideline

· <value - parameter not detected above associated laboratory reported detection limit

· dry - sampling location dry at the time of sampling

· - or blank - parameter not analysed during sampling event

Table 1: Groundwater Chemistry Results Oxford County Closed Landfill Sites

			Gunn's H	lill Landfill	
5	0.500.00	GH-P1	GH-P2	GH-P3A	GH-P3B
Parameter	ODWQS	11-Apr-22	11-Apr-22	11-Apr-22	11-Apr-22
pH (field - pH units)	6.5 - 8.5 OG	6.99	7.05	6.89	6.98
Conductivity (field - μS/cm)		429	439	483	472
Temperature (field - °C)	15 AO	13.26	10.99	11.20	11.68
pH (lab - pH units)	6.5 - 8.5 OG	8.04	8.00	8.04	8.01
Conductivity (lab - µS/cm)		462	493	517	525
Total Dissolved Solids	500 AO	223	260	337	303
Chemical Oxygen Demand		<8	<8	<8	8
Dissolved Organic Carbon	5 AO	1.0	<1.0	<1.0	1.3
Alkalinity	30 - 500 OG	254	267	244	246
Chloride	250 AO	2	4	8	8
Sulphate	500 AO	16	18	54	54
Calcium		61.9	65.4	78.9	74.8
Magnesium		22.9	24.0	24.3	23.5
Sodium	200 AO	15.0	15.2	4.04	3.83
Potassium		1.07	1.20	1.02	0.968
Total Kjehldahl Nitrogen		<0.5	<0.5	<0.5	<0.5
Ammonia		0.3	0.2	<0.1	<0.1
Nitrate	10.0 MAC	<0.06	<0.06	<0.06	0.6
Nitrite	1.0 MAC	<0.03	<0.03	<0.03	<0.03
Total Phosphorus		<0.03	<0.03	<0.03	<0.03
Phenols		<0.002	<0.002	<0.002	<0.002
Arsenic	0.01 MAC	0.0054	0.0004	0.0028	0.0046
Barium	1.0 MAC	0.131	0.179	0.186	0.194
Boron	5.0 IMAC	0.052	0.050	0.009	0.019
Cadmium	0.005 MAC	0.000003	<0.000003	0.000003	<0.000003
Chromium	0.05 MAC	0.00022	0.00009	0.00024	0.00010
Copper	1 AO	0.0017	0.0019	0.0029	0.0012
Iron	0.3 AO	1.43	1.10	1.00	1.05
Lead	0.010 MAC	<0.00009	<0.00009	<0.00009	<0.00009
Manganese	0.05 AO	0.0268	0.0223	0.0527	0.0341
Mercury	0.001 MAC	<0.00001	<0.00001	<0.0001	<0.00001
Zinc	5.0 AO	0.007	<0.002	0.018	0.026
Benzene (µg/L)	1 MAC	<0.5	<0.5	<0.5	<0.5
1,4 - Dichlorobenzene (µg/L)	5 MAC, 1 AO	<0.5	<0.5	<0.5	<0.5
Dichloromethane (µg/L)	50 MAC	<0.5	<0.5	<0.5	<0.5
Toluene (µg/L)	60 MAC, 24 AO	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride (µg/L)	1 MAC	<0.2	<0.2	<0.2	<0.2

Notes: · All units in mg/L unless otherwise noted

· ODWQS - Ontario Drinking Water Quality Standard (June 2003)

· Bold values indicate exceedance of ODWQS

· All units in mg/L unless otherwise noted

· µS/cm - microSiemens per centimetre

· °C - degrees Celsius

· µg/L - micrograms per litre

· MAC - Maximum Acceptable Concentration

· IMAC - Interim Maximum Acceptable Concentration

· AO - Aesthetic Objective

· OG - Operational Guideline

· <value - parameter not detected above associated laboratory reported detection limit

· dry - sampling location dry at the time of sampling

· - or blank - parameter not analysed during sampling event

Table 2: Summary of Groundwater Duplicate Sample Results Oxford County Closed Landfill Sites

				April 11, 2022				April 11, 2022			(October 18, 2022	2
			Original	Duplicate	RPD		Original	Duplicate	RPD		Original	Duplicate	RPD
Parameter	Unit	RDL	BB-P1	BB-GWDUP		RDL	GH-P1	GH-GWDUP		RDL	BB-MW1	BB-GWDUP	
Conductivity (lab)	μS/cm	2	557	561	1	2	462	462	<1	2	1080	1100	<1
Total Dissolved Solids	mg/L	30	346	317	9	30	223	234	5	30	574	546	5
Chemical Oxygen Demand	mg/L	8	<8	<8	<2RDL	8	<8	9	<2RDL	8	23	23	<1
Dissolved Organic Carbon	mg/L	1.0	1.5	1.4	7	1.0	1	1	<1	1	8	8	<1
Alkalinity	mg/L	2	295	297	1	2	254	250	2	2	498	491	1
Chloride	mg/L	1	2	2	<2RDL	1	2	3	<2RDL	0.2	79	76	4
Sulphate	mg/L	2	5	5	<1	2	16	11	37	2	24	25	4
Calcium	mg/L	0.01	82.3	83.4	1	0.01	61.9	61.3	1	0.01	101	95.6	5
Magnesium	mg/L	0.001	22.4	22.3	<1	0.001	22.9	22.0	4	0.001	37.4	35.4	5
Sodium	mg/L	0.01	4.94	4.82	2	0.01	15.0	15.3	2	0.01	29.0	27.9	4
Potassium	mg/L	0.009	5.12	5.16	1	0.009	1.07	1.07	<1	0.009	9.69	9.25	5
Total Kjehldahl Nitrogen	mg/L	0.5	<0.5	<0.5	<2RDL	0.5	<0.5	<0.5	<2RDL	0.5	16.2	16.4	1
Ammonia	mg/L	0.1	<0.1	<0.1	<2RDL	0.1	0.3	0.2	<2RDL	0.1	15.2	15.3	1
Nitrate	mg/L	0.06	5.28	5.28	<1	0.06	<0.06	<0.06	<2RDL	0.06	<0.06	<0.06	<2RDL
Nitrite	mg/L	0.03	<0.03	<0.03	<2RDL	0.03	<0.03	<0.03	<2RDL	0.03	<0.03	<0.03	<2RDL
Total Phosphorus	mg/L	0.03	<0.03	<0.03	<2RDL	0.03	<0.03	<0.03	<2RDL	0.03	0.26	0.30	14
Phenols	mg/L	0.002	<0.002	<0.002	<2RDL	0.002	<0.002	<0.002	<2RDL	0.002	0.002	0.003	<2RDL
Arsenic	mg/L	0.0002	<0.0002	<0.0002	<2RDL	0.0002	0.0054	0.0058	7	0.0002	0.0003	0.0002	<2RDL
Barium	mg/L	0.00002	0.0304	0.0301	1	0.00002	0.131	0.136	4	0.00002	0.358	0.380	6
Boron	mg/L	0.002	0.045	0.046	2	0.002	0.052	0.062	18	0.002	0.103	0.108	5
Cadmium	mg/L	0.000003	0.000007	0.000006	<2RDL	0.000003	0.000003	0.000003	<1	0.000003	<0.000003	0.000003	<2RDL
Chromium	mg/L	0.00008	0.00096	0.00067	36	0.00008	0.00022	0.00014	<2RDL	0.00008	0.00044	0.00040	10
Copper	mg/L	0.0002	0.0048	0.0046	4	0.0002	0.0017	0.0006	96	0.0002	<0.0002	<0.0002	<2RDL
Iron	mg/L	0.007	<0.007	<0.007	<2RDL	0.007	1.43	1.38	4	0.007	3.28	3.12	5
Lead	mg/L	0.00009	0.00017	0.00017	<2RDL	0.00009	<0.00009	<0.00009	<2RDL	0.00009	<0.00009	<0.00009	<2RDL
Manganese	mg/L	0.00001	0.00024	0.00029	19	0.00001	0.0268	0.0269	<1	0.00001	0.064	0.060	5
Mercury	mg/L	0.00001	<0.00001	<0.00001	<2RDL	0.00001	<0.00001	<0.00001	<2RDL	0.00001	<0.00001	<0.00001	<2RDL
Zinc	mg/L	0.002	0.218	0.202	8	0.002	0.007	0.006	<2RDL	0.002	<0.002	<0.002	<2RDL

Notes: · RDL - Reported Detection Limit · RPD - Relative Percent Difference · Bold indicates RPD >20% (or >2RDL)

Table 3: Surface Water Chemistry Results Oxford County Closed Landfill Sites

		Blandford-Blenheim Landfill							
Dovernator	DWOO	BB-	SW1	BB-	SW2	BB-	SW3		
Parameter	PWQO	22-Mar-22	18-Oct-22	22-Mar-22	18-Oct-22	22-Mar-22	18-Oct-22		
pH (field - pH units)		7.32		7.34		7.91			
Conductivity (field - μS/cm)		174	•	278		501			
Temperature (field - °C)		5.02	DRY	2.96	DRY	5.24	DRY		
Dissolved Oxygen (field)	4-7 (temp dependent)	7.58	•	12.94		11.94			
Flow Rate (L/s)		No Flow	•	No Flow		No Flow			
pH (lab - pH units)	6.5 - 8.5	7.83	-	7.91	-	7.66	-		
Conductivity (lab - µS/cm)		182	-	310	-	437	-		
Total Dissolved Solids		100	-	166	-	306	-		
Chemical Oxygen Demand		<8	-	28	-	25	-		
Biological Oxygen Demand		<4	-	4	-	<4	-		
Total Suspended Solids		4	-	7	-	10	-		
Alkalinity	<75% background	76	-	153	-	264	-		
Chloride		11	-	6.5	-	13	-		
Sulphate		2.0	-	2.2	-	5.0	-		
TKN		<0.5	-	4.1	-	3.6	-		
Ammonia		<0.1	-	3.8	-	3.2	-		
Un-ionized Ammonia	0.02	<0.001	-	0.009	-	0.033	-		
Nitrate		<0.03	-	<0.03	-	<0.03	-		
Nitrite		<0.06	-	0.76	-	0.07	-		
Total Phosphorus	0.03*	<0.03	-	<0.03	-	<0.03	-		
Phenols	0.001	<0.002	-	0.002	-	<0.002	-		
Arsenic	0.005*	0.0003	-	0.0003	-	0.0006	-		
Barium		0.00911	-	0.0219	-	0.0445	-		
Boron	0.200*	0.006	-	0.055	-	0.078	-		
Cadmium	0.0001*	0.000008	-	0.000030	-	0.000009	-		
Chromium	0.0089**	0.00026	-	0.00037	-	0.00024	-		
Copper	0.005	0.0021	-	0.0029	-	0.0008	-		
Iron	0.3	0.088	-	1.26	-	1.41	-		
Lead	0.003*	0.00009	-	0.00125	-	0.00015	-		
Mercury	0.0002	<0.00001	-	<0.00001	-	<0.00001	-		
Zinc	0.02*	0.004	-	0.005	-	0.005	-		
Benzene (µg/L)	100*	<0.5	-	<0.5	-	<0.5	-		
1,4 - Dichlorobenzene (µg/L)	4	<0.5	-	<0.5	-	<0.5	-		
Dichloromethane (µg/L)	100*	<0.5	-	<0.5	-	<0.5	-		
Toluene (µg/L)	0.8*	<0.5	-	<0.5	-	<0.5	-		
Vinyl Chloride (µg/L)	600*	<0.2	-	<0.2	-	<0.2	-		

Notes: · All concentrations are mg/L, unless otherwise noted.

 \cdot Un-ionized ammonia concentration calculated based on the fraction of NH $_3$ (f) in the total ammonia.

where: $f = 1/(10^{pKa-pH})+1)$ pKa=0.09018 + 2729.92/T

T = ambient water temperature in Kelvin (K = C + 273.16)

- \cdot Bold values exceed the PWQO.
- · PWQO Provincial Water Quality Objectives (July 1994 with updates)
- · * indicates an interim PWQO.
- \cdot ** indicates PWQO for Chromium III
- \cdot <value parameter not detected above associated laboratory reported detection limit
- \cdot dry sampling location dry at the time of sampling
- \cdot or blank parameter not analysed during sampling event

Table 3: Surface Water Chemistry Results Oxford County Closed Landfill Sites

			Gunn's Hill Landfill	
Parameter	PWQO	GH-SEEP	GH-SW1	GH-SW2
pH (field - pH units)		No seeps were observed on	-	-
Conductivity (field - μS/cm)		February 15, March 22,	-	-
Temperature (field - °C)		March 30,	-	-
Dissolved Oxygen (field)	4-7 (temp dependent)	July 13, October 17,	-	-
Flow Rate (L/s)		or December 12, 2022.	-	-
pH (lab - pH units)	6.5 - 8.5	-	-	
Conductivity (lab - µS/cm)		-	-	-
Total Dissolved Solids		-	-	-
Chemical Oxygen Demand		-	-	-
Biological Oxygen Demand		-	-	-
Total Suspended Solids		-	-	-
Alkalinity	<75% background	-	-	-
Chloride		-	-	-
Sulphate		-	-	-
TKN		-	-	-
Ammonia		-	-	-
Un-ionized Ammonia	0.02	-	-	-
Nitrate		-	-	-
Nitrite		-	-	-
Total Phosphorus	0.03*	-	-	-
Phenols	0.001	-	-	-
Arsenic	0.005*	-	-	-
Barium		-	-	-
Boron	0.200*	-	-	-
Cadmium	0.0001*	-	-	-
Chromium	0.0089**	-	-	-
Copper	0.005	-	-	-
Iron	0.3	-	-	-
Lead	0.003*	-	-	-
Mercury	0.0002	-	-	-
Zinc	0.02*	-	-	-
Benzene (µg/L)	100*	-	-	-
1,4 - Dichlorobenzene (µg/L)	4	-	-	-
Dichloromethane (µg/L)	100*	-	-	-
Toluene (μg/L)	0.8*	-	-	-
Vinyl Chloride (µg/L)	600*	-	-	-

Notes: · All concentrations are mg/L, unless otherwise noted.

 \cdot Un-ionized ammonia concentration calculated based on the fraction of NH $_3$ (f) in the total ammonia.

where: $f = 1/(10^{pKa-pH})+1)$

pKa=0.09018 + 2729.92/T

T = ambient water temperature in Kelvin (K = C + 273.16)

- \cdot Bold values exceed the PWQO.
- · PWQO Provincial Water Quality Objectives (July 1994 with updates)
- · * indicates an interim PWQO.
- · ** indicates PWQO for Chromium III
- \cdot <value parameter not detected above associated laboratory reported detection limit
- \cdot dry sampling location dry at the time of sampling
- \cdot or blank parameter not analysed during sampling event

Table 4: Summary of Surface Water Duplicate Sample Results Oxford County Closed Landfill Sites

				March 22, 2022	
Parameter	Unit	RDL	Original	Duplicate	RPD
Parameter	Unit	KUL	BB-SW2	SW DUP	
Conductivity (lab)	μS/cm	2	310	321	3
Total Dissolved Solids	mg/L	30	166	169	2
Chemical Oxygen Demand	mg/L	8	28	27	4
Biological Oxygen Demand	mg/L	2	4	<4	<2RDL
Total Suspended Solids	mg/L	2	7	7	<2RDL
Alkalinity	mg/L	2	153	158	3
Chloride	mg/L	0.2	6.5	6.5	<1
Sulphate	mg/L	0.2	2.2	2.2	<1
TKN	mg/L	0.5	4.1	4.1	<1
Ammonia	mg/L	0.1	3.8	3.8	<1
Un-ionized Ammonia	mg/L	0.001	0.009	0.009	<1
Nitrate	mg/L	0.06	<0.03	<0.03	<2RDL
Nitrite	mg/L	0.03	0.76	0.76	<1
Total Phosphorus	mg/L	0.03	<0.03	<0.03	<2RDL
Phenols	mg/L	0.002	0.002	<0.002	<2RDL
Arsenic	mg/L	0.0002	0.0003	0.0007	<2RDL
Barium	mg/L	0.0002	0.0219	0.0228	4
Boron	mg/L	0.002	0.055	0.060	9
Cadmium	mg/L	0.000003	0.000030	0.000042	33
Chromium	mg/L	0.00008	0.00037	0.00048	26
Copper	mg/L	0.0002	0.0029	0.0024	<1
Iron	mg/L	0.007	1.26	1.31	4
Lead	mg/L	0.00009	0.00125	0.00125	0
Mercury	mg/L	0.00001	<0.00001	<0.00001	<2RDL
Zinc	mg/L	0.002	0.005	0.006	<2RDL

Notes: · RDL - Reported Detection Limit

[·] RPD - Relative Percent Difference

[·] Bold indicates RPD >20% (or >2RDL)

Table 5 **Landfill Gas Measurements and Water Level Elevations Oxford County Closed Landfills**

Well ID	Date	% LEL	% O2	Relative Pressure (in H20)	Measuring Point (masl)	Water Level (mbMP)	Groundwater Elevation (masl)	Top of Screen Elevation (masl)	Well Screen Submerged
Blandford-Blenheim Lar	ndfill								
	15-Feb-22	0	20.9	0.00	304.95	4.24	300.71	302.68	No
DD 004	13-Jul-22	0	20.9	0.00	304.95	4.18	300.77	302.68	No
BB-GP1	18-Oct-22	0	20.9	0.00	304.95	4.84	300.11	302.68	No
	12-Dec-22	0	20.9	0.00	304.95	5.08	299.87	302.68	No
	15-Feb-22	0	20.9	0.00	300.08	2.41	297.67	293.55	Yes
	11-Apr-22	-	-	-	300.08	2.36	297.72	293.55	Yes
BB-MW1	13-Jul-22	0	20.9	0.00	300.08	2.47	297.61	293.55	Yes
	18-Oct-22	0	20.9	0.00	300.08	2.93	297.15	293.55	Yes
	12-Dec-22	0	20.9	0.00	300.08	2.71	297.37	293.55	Yes
	15-Feb-22	0	20.9	0.00	303.88	4.40	299.48	296.52	Yes
	11-Apr-22	-	-	-	303.88	3.99	299.89	296.52	Yes
BB-MW2	13-Jul-22	0	20.9	0.00	303.88	4.43	299.45	296.52	Yes
	18-Oct-22	0	20.9	0.00	303.88	4.94	298.94	296.52	Yes
	12-Dec-22	0	20.9	0.00	303.88	5.03	298.85	296.52	Yes
	15-Feb-22	0	20.9	0.00	305.22	4.52	300.70	298.02	Yes
	11-Apr-22	-	-	-	305.22	4.07	301.15	298.02	Yes
BB-MW3	13-Jul-22	0	20.9	0.00	305.22	4.56	300.66	298.02	Yes
	18-Oct-22	0	20.9	0.00	305.22	5.20	300.02	298.02	Yes
	12-Dec-22	0	20.9	0.00	305.22	5.42	299.80	298.02	Yes
	15-Feb-22	0	20.9	0.00	303.52	4.75	298.77	N/A	N/A
	11-Apr-22	-	-	-	303.52	5.94	297.58	N/A	N/A
BB-BH1-1	13-Jul-22	0	20.9	0.00	303.52	4.47	299.05	N/A	N/A
	18-Oct-22	0	20.9	0.00	303.52	6.58	296.94	N/A	N/A
	12-Dec-22	0	20.9	0.00	303.52	4.90	298.62	N/A	N/A
	15-Feb-22	0	20.9	0.00	303.50	4.36	299.14	N/A	N/A
	11-Apr-22	-	-	-	303.50	4.10	299.40	N/A	N/A
BB-BH1-2	13-Jul-22	0	20.9	0.00	303.50	4.16	299.34	N/A	N/A
	18-Oct-22	0	20.9	0.00	303.50	4.51	298.99	N/A	N/A
	12-Dec-22	0	20.9	0.00	303.50	4.41	299.09	N/A	N/A
Gunn's Hill Landfill									
	15-Feb-22	0	20.9	0.00	320.51	2.08	318.43	318.67	No
	13-Jul-22	0	20.9	0.00	320.51	2.55	317.96	318.67	No
GH-GP1	17-Oct-22	0	20.6	0.00	320.51	2.57	317.94	318.67	No
	12-Dec-22	0	20.9	0.00	320.51	2.62	317.89	318.67	No
	15-Feb-22	0	20.9	0.00	313.54	DRY	<309.52	311.66	No
	13-Jul-22	0	20.9	0.00	313.54	DRY	<309.52	311.66	No
GH-GP2	17-Oct-22	0	19.7	0.00	313.54	DRY	<309.52	311.66	No
	12-Dec-22	0	20.9	0.00	313.54	DRY	<309.52	311.66	No
Notes:									

Notes:

LEL - Lower Explosive Limit for methane in air

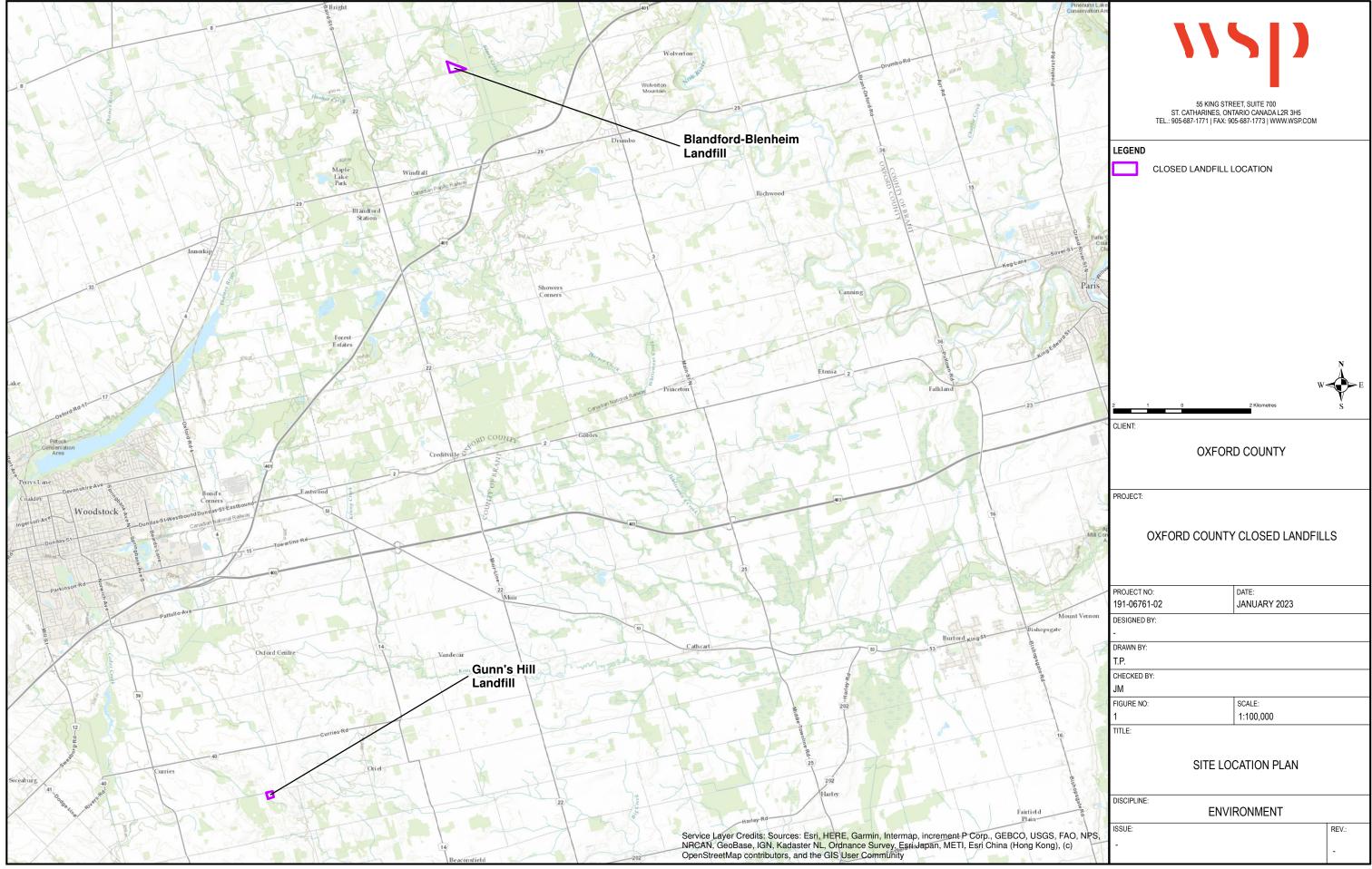
in H20 - inches of water

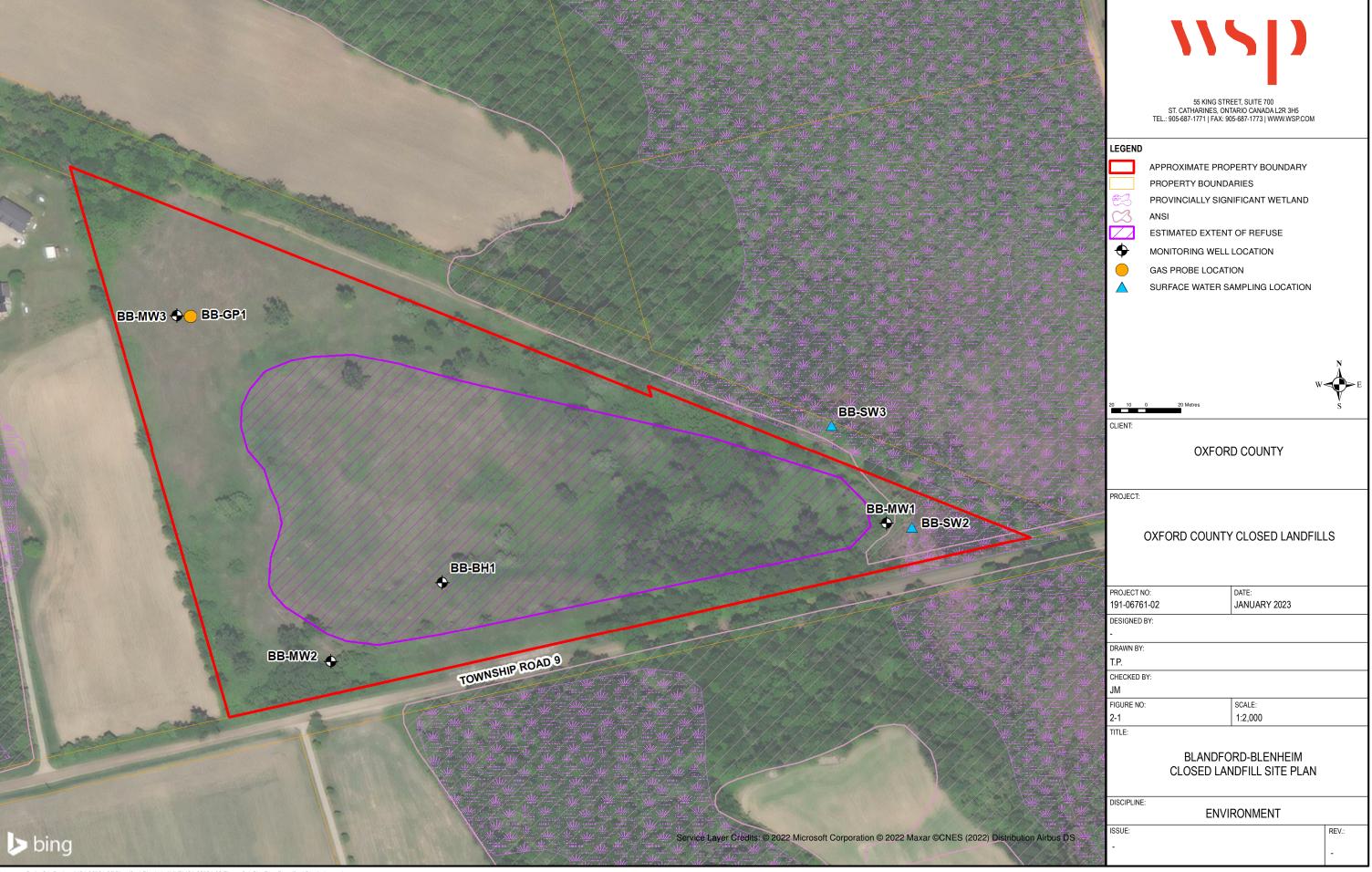
masl - metres above sea level

mbMP - metres below measuring point (top of pipe)

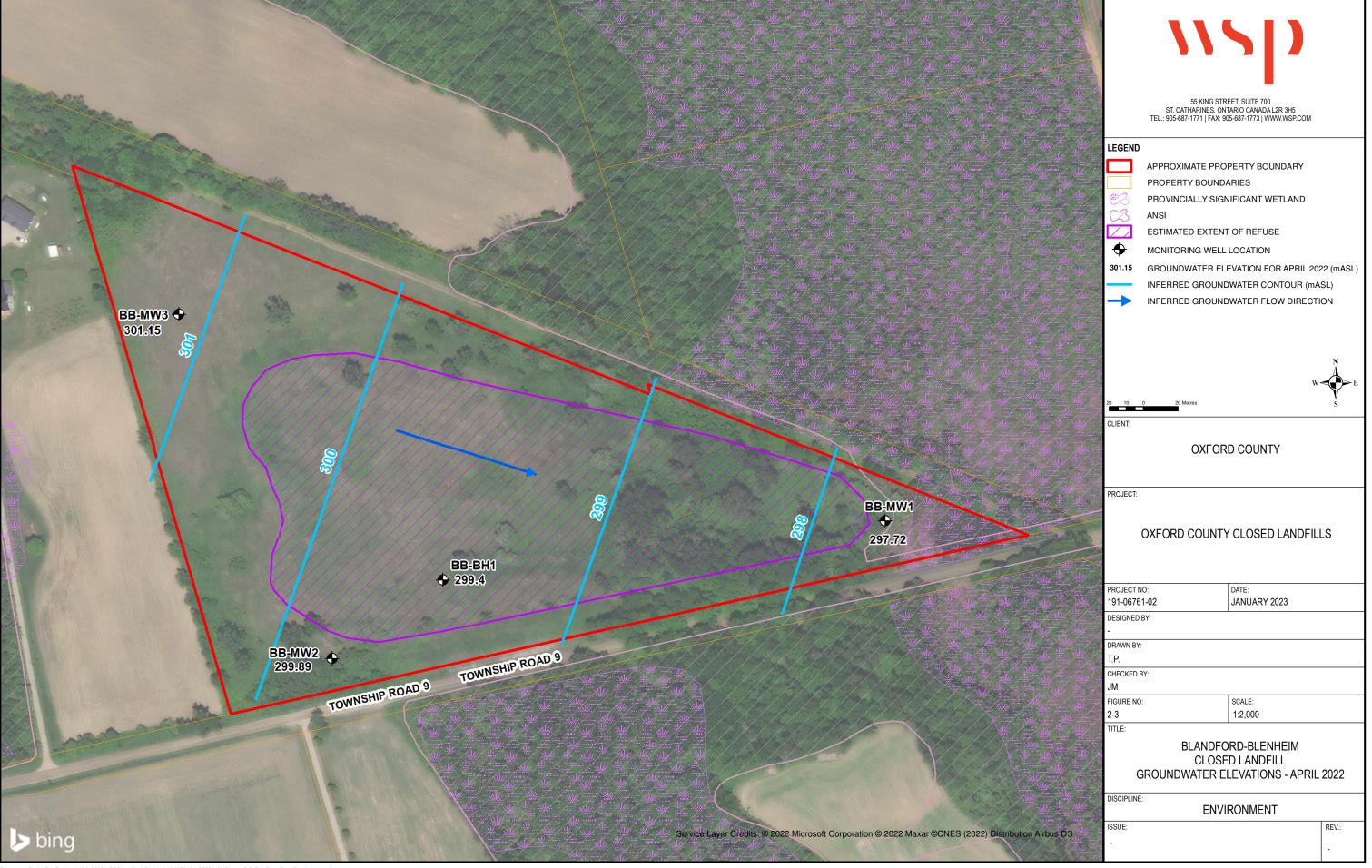
NA - not applicable

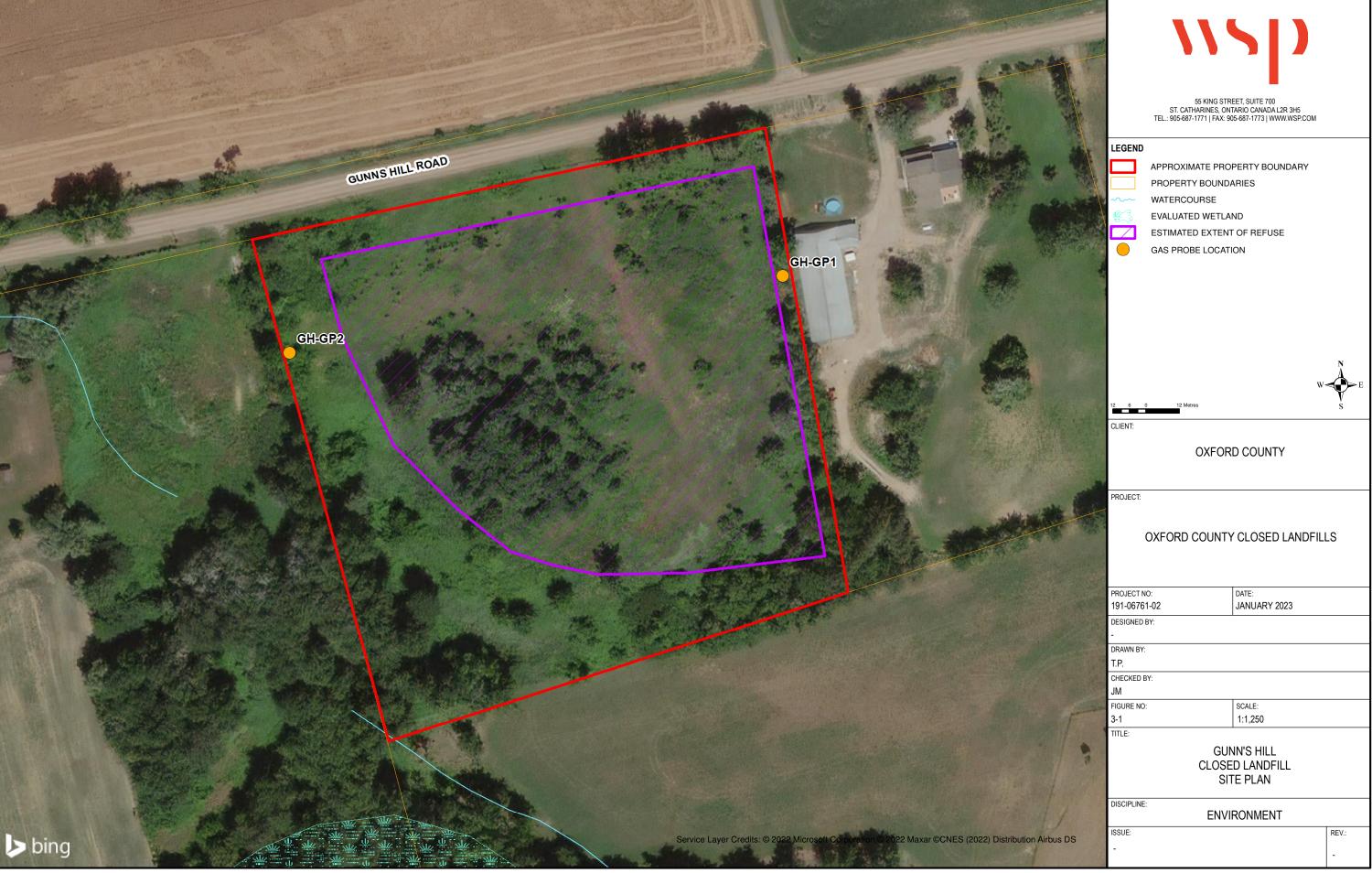
Table 6: Guideline B-7 Compliance Oxford County Closed Landfill Sites


Parameter	Reference Quality	ODWQS	Guideline B-7	BB-MW1		BB-MW2	
				11-Apr-22	18-Oct-22	11-Apr-22	18-Oct-22
Total Dissolved Solids	220	500 AO	360	617	574	420	394
Dissolved Organic Carbon	0.9	5 AO	3.0	9.3	8	1.1	3
Alkalinity	208	30 - 500 OG	354	597	498	248	231
Chloride	2	250 AO	126	48	79	27	37
Sulphate	5	500 AO	253	22	24	73	82
Sodium	8.85	200 AO	104	35.4	29.0	5.02	3.85
Nitrate	0.19	10.0 MAC	2.64	<0.06	<0.06	0.70	0.45
Nitrite	0.015	1.0 MAC	0.26	<0.03	<0.03	0.14	0.11
Arsenic	0.0006	0.01 MAC	0.0030	0.0005	0.0003	0.0011	0.0007
Barium	0.009	1.0 MAC	0.257	0.519	0.358	0.0633	0.0613
Boron	0.0115	5.0 IMAC	1.26	0.176	0.103	0.013	0.007
Cadmium	0.000007	0.005 MAC	0.0013	<0.000003	<0.000003	0.000005	<0.000003
Chromium	0.0005	0.05 MAC	0.013	0.00064	0.00044	0.00014	0.00013
Copper	0.00085	1 AO	0.50	0.0003	<0.0002	0.0008	<0.0002
Iron	0.0035	0.3 AO	0.15	3.84	3.28	0.198	0.095
Lead	0.00005	0.010 MAC	0.0025	<0.00009	<0.00009	0.00019	<0.00009
Manganese	0.0026	0.05 AO	0.026	0.0972	0.0636	0.0318	0.0190
Mercury	0.000005	0.001 MAC	0.00025	<0.00001	<0.00001	<0.00001	<0.00001
Zinc	0.001	5.0 AO	2.50	0.002	<0.002	0.004	<0.002
Benzene (µg/L)	0.25	1 MAC	0.44	<0.5	<0.5	<0.5	<0.5
1,4 - Dichlorobenzene (µg/L)	0.25	5 MAC	1.44	<0.5	<0.5	<0.5	<0.5
	0.25	1 AO	0.63				
Dichloromethane (µg/L)	0.25	50 MAC	12.7	<0.5	<0.5	<0.5	<0.5
Toluene (µg/L)	0.25	60 MAC	15.2	<0.5	<0.5	<0.5	<0.5
	0.25	24 AO	12.1				
Vinyl Chloride (µg/L)	0.1	1 MAC	0.33	<0.2	<0.2	<0.2	<0.2


Notes: · All units in mg/L unless otherwise noted

- · ODWQS Ontario Drinking Water Quality Standard (June 2003)
- \cdot Bold values indicate exceedance of GB-7 value
- \cdot All units in mg/L unless otherwise noted
- · µg/L micrograms per litre
- \cdot MAC Maximum Acceptable Concentration
- · IMAC Interim Maximum Acceptable Concentration
- · AO Aesthetic Objective
- · OG Operational Guideline
- \cdot <value parameter not detected above associated laboratory reported detection limit
- \cdot Reference Quality based on 2022 groundwater quality measured from background observation well BB-MW3.




FIGURES

APPENDIX

A BOREHOLE LOGS

APPENDIX

A-1 BLANDFORD-BLENHEIM LANDFILL

LOG OF BOREHOLE BB-GP1

project | Oxford County Closed Landfills

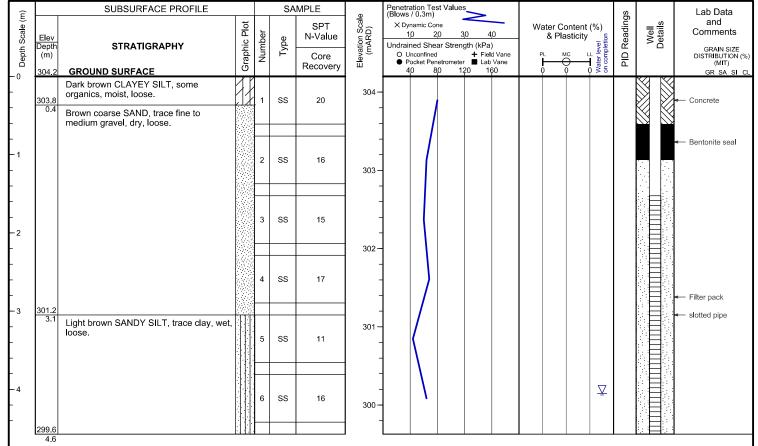
client | County of Oxford

position |

location | Blandford-Blenheim Landfill, Ontario

rig type | CME 75, track-mounted

date started | 2022-01-18


project no. | 191-06761-02

supervisor | MEQ

method | Hollow stem augers, 215 mm dia.
coring | n/a

reviewer | AMS

END OF BOREHOLE

Unstabilized water level at 4.1 m below ground surface upon completion.

LOG OF BOREHOLE BB-MW1

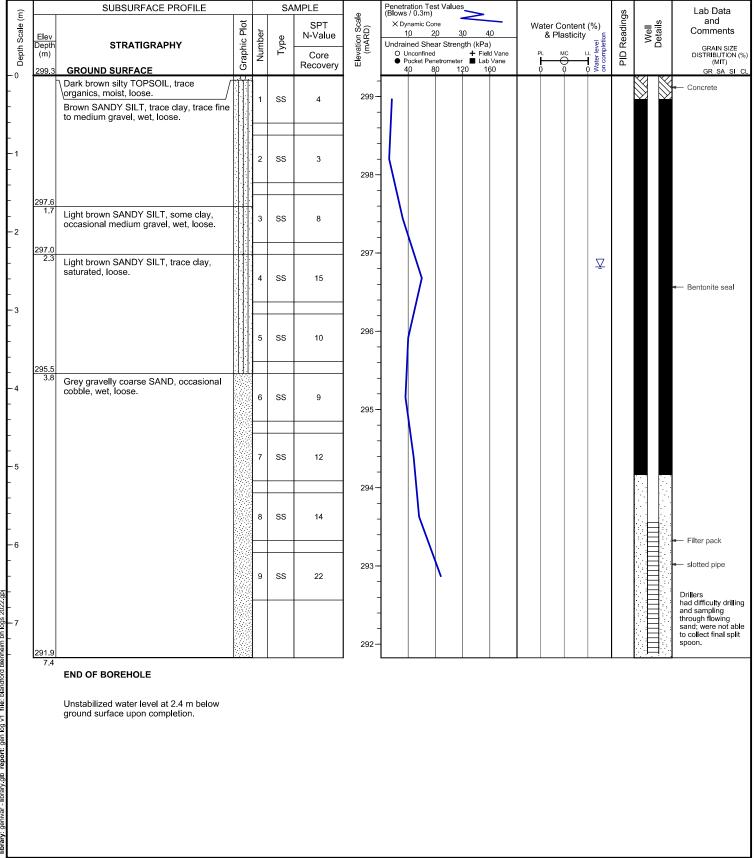
project | Oxford County Closed Landfills

client | County of Oxford

position |

Iocation | Blandford-Blenheim Landfill, Ontario

rig type | CME 75, track-mounted


method | Hollow stem augers, 215 mm dia.

date started | 2022-01-19

project no. | 191-06761-02

supervisor | MEQ

coring | n/a

LOG OF BOREHOLE BB-MW2

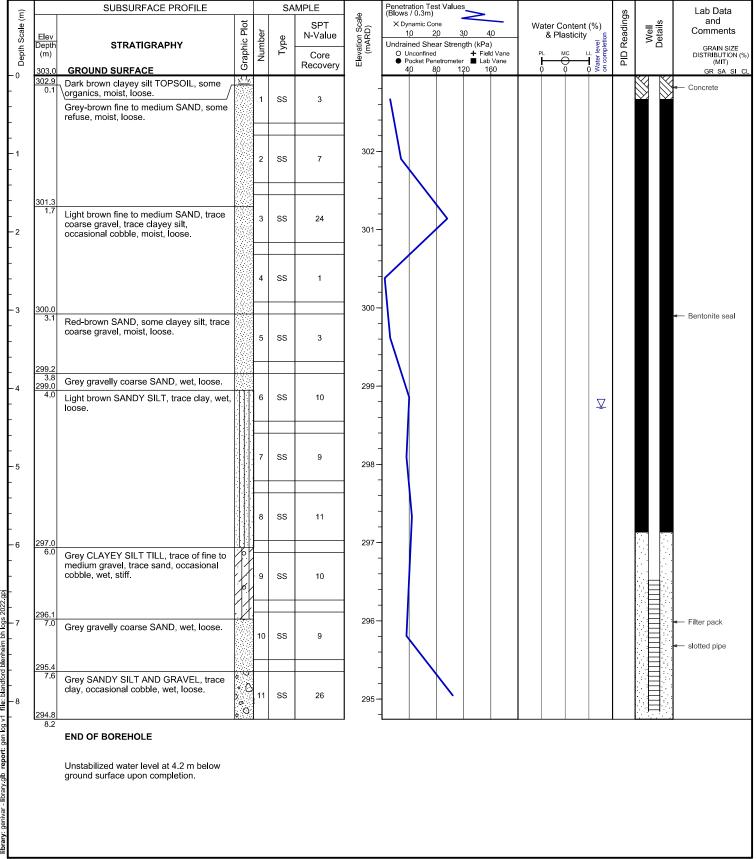
project | Oxford County Closed Landfills

client | County of Oxford

position |

Iocation | Blandford-Blenheim Landfill, Ontario

rig type | CME 75, track-mounted


date started | 2022-01-19

project no. | 191-06761-02

method | Hollow stem augers, 215 mm dia.

supervisor | MEQ

coring | n/a

LOG OF BOREHOLE BB-MW3

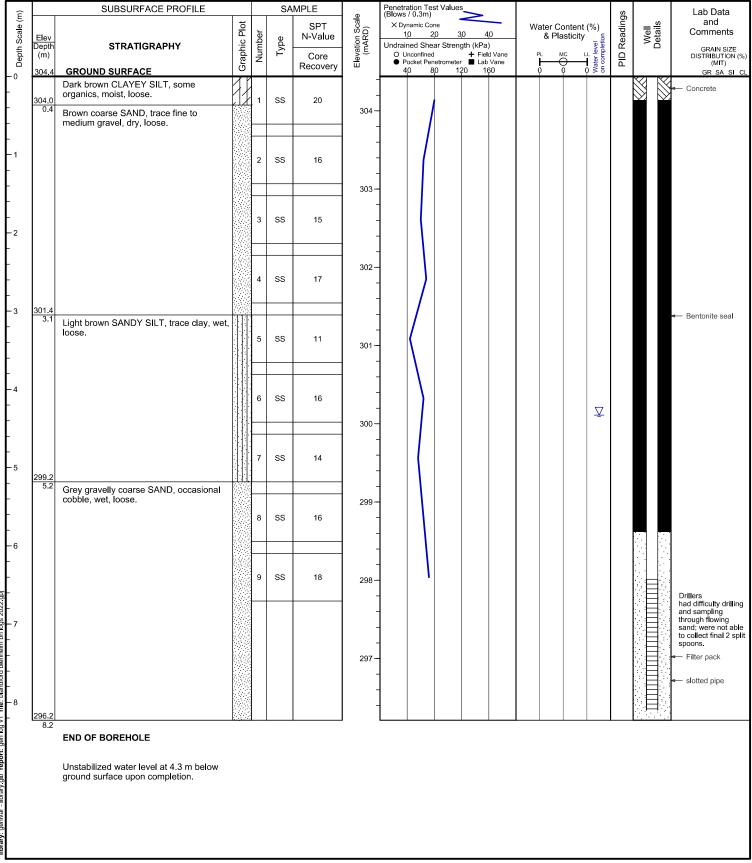
project | Oxford County Closed Landfills

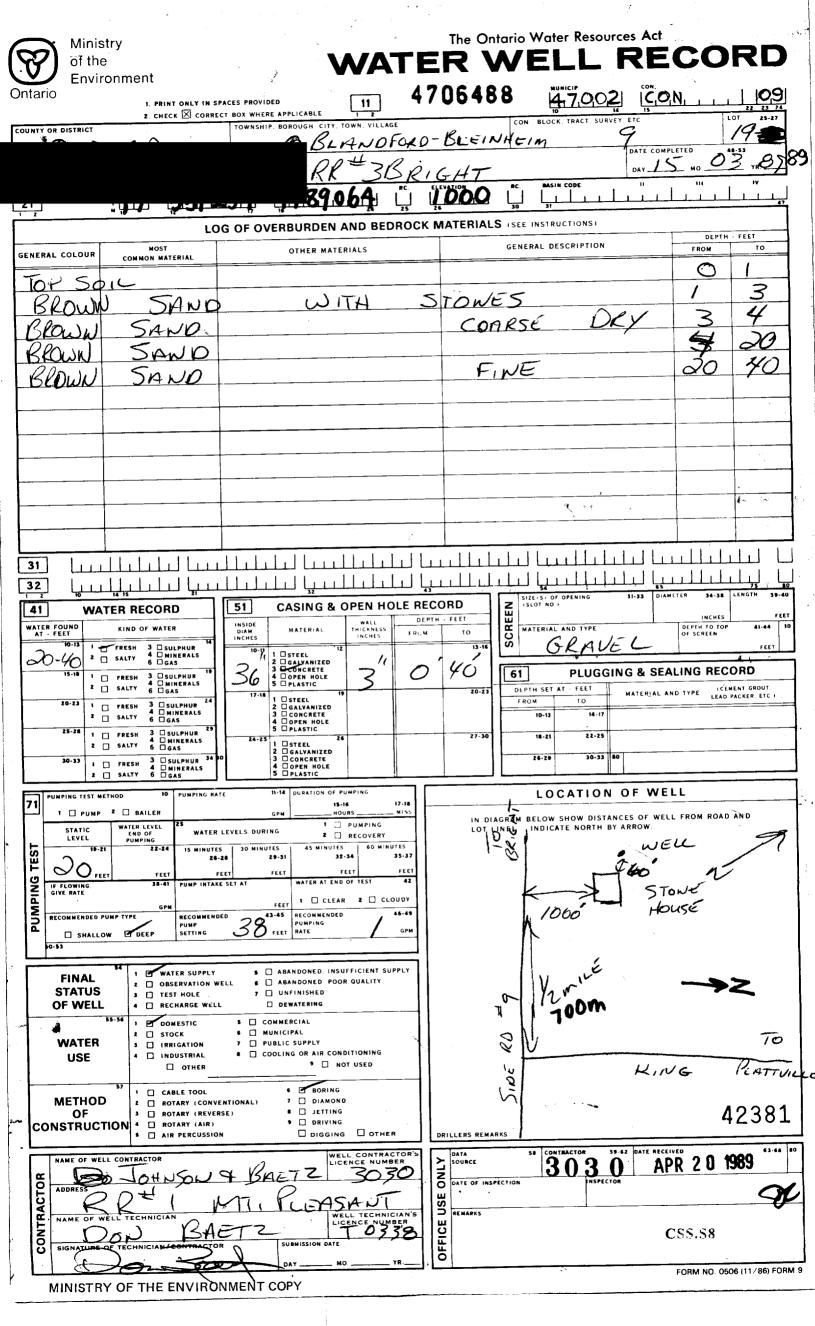
Iocation | Blandford-Blenheim Landfill, Ontario

client | County of Oxford

rig type | CME 75, track-mounted

date started | 2022-01-18


project no. | 191-06761-02


Charter County or Oxford

method | Hollow stem augers, 215 mm dia.

supervisor | MEQ

position | coring | n/a

APPENDIX

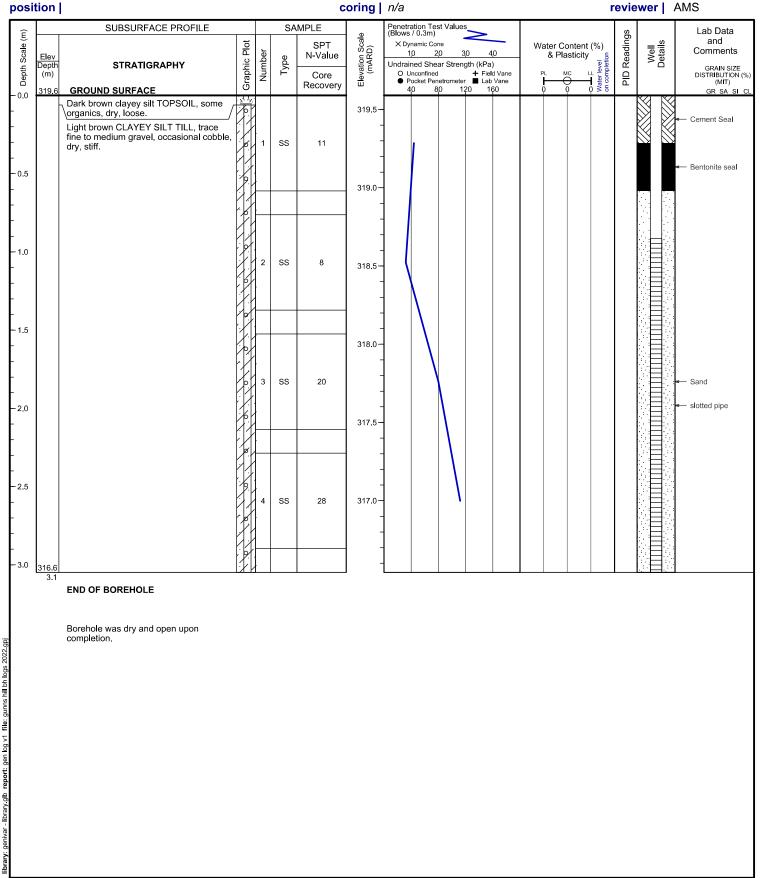
A-2 GUNN'S HILL LANDFILL

LOG OF BOREHOLE GH-GP1

project | Oxford County Closed Landfills

rig type | CME 75, track-mounted

date started | 2022-01-19


project no. | 191-06761-02

client | County of Oxford

method | Hollow stem augers, 215 mm dia.

supervisor | MEQ

Iocation | Gunn's Hill Landfill, Ontario

LOG OF BOREHOLE GH-GP2

project | Oxford County Closed Landfills

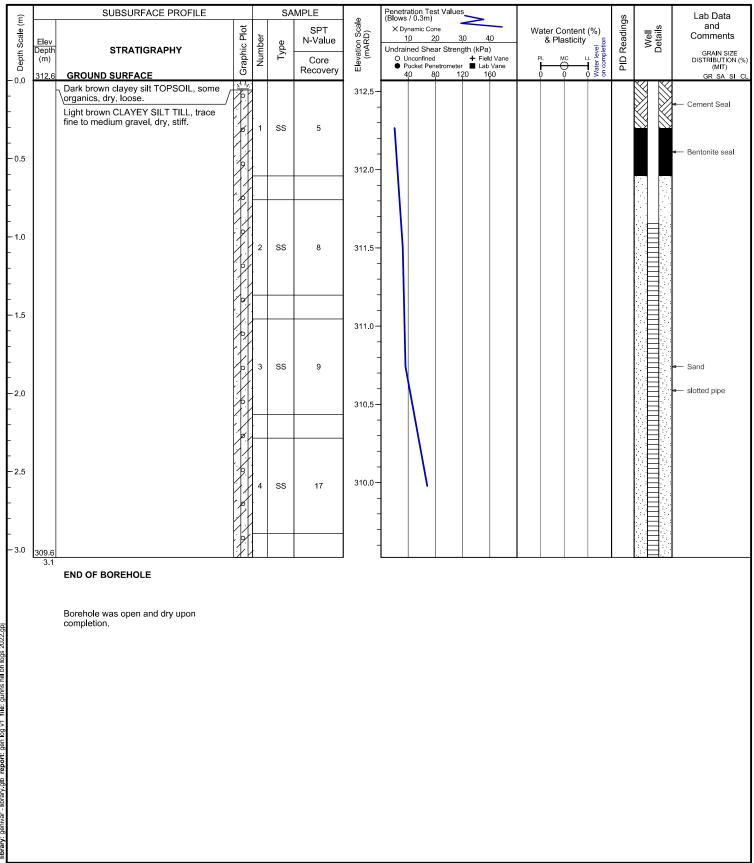
client | County of Oxford

position |

Iocation | Gunn's Hill Landfill, Ontario

Mora

rig type | CME 75, track-mounted


date started | 2022-01-19

project no. | 191-06761-02

date started | 2022

method | Hollow stem augers, 215 mm dia. supervisor | MEQ

coring | n/a

40p26 The Ontario Water Resources Commission Act VATER WELL RECORD 4703235 47007 1. PRINT ONLY IN SPACES PROVIDED
2. CHECK CORRECT BOX WHERE APPLICABLE LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) DEPTH - FEET GENERAL DESCRIPTION MOST FROM OTHER MATERIALS GENERAL COLOUR COMMON MATERIAL 90 0 allows 2122 1999 astast 1 1 19160 107 1 1 19213295W 1 19213 199 1 1 1 1 1 1 10 14 15 21 32 - 43 54 65 75 32 SIZE(S) OF OPENING (SLOT NO.) TEN CASING & OPEN HOLE RECORD WATER RECORD 41 MATERIAL AND TYPE WATER FOUND AT - FEET 02/210-1 KIND OF WATER MATERIAL 1 FRESH 2 □ SALTY 3 T SULPHUR 1 STEEL 2 GALVANIZED 2/3 1.88 212-213 4 MINERAL RECORD & SEALING PLUGGING 3 CONCRETE 61 3 🗌 SULPHUR 1 | FRESH 4 OPEN HOLE DEPTH SET AT - FEET 4 MINERAL 2 SALTY MATERIAL AND TYPE 1 T STEEL то 1 🗌 FRESH 2 GALVANIZED 2 SALTY 4 MINERAL 3 CONCRETE 4 OPEN HOLE 22-25 3 | SULPHUR 27-30 1 | FRESH 1 STEEL
2 GALVANIZED 2 🗌 SALTY 4 🗌 MINERAL 3 SULPHUR
4 MINERAL 1 🗌 FRESH 3 □ CONCRETE OPEN HOLE 2 SALTY LOCATION OF WELL IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE. INDICATE NORTH BY ARROW. 2 BAILER WATER LEVEL END OF PUMPING 2 RECOVER WATER LEVELS DURING TEST 09022 1 CLEAR 114 FEET RATE PUMP SETTING DEEP SHALLOW 000.8 GPM./FT. SPECIFIC CAPACITY WATER SUPPLY 5 ABANDONED, INSUFFICIENT SUPPLY FINAL 6 ABANDONED, POOR QUALITY
7 UNFINISHED **STATUS** 3 TEST HOLE
4 RECHARGE WELL OF WELL DOMESTIC 5 COMMERCIAL STOCK WATER 7 PUBLIC SUPPLY IRRIGATION 8 COOLING OR AIR CONDITIONING USE 4 INDUSTRIAL Well is 100'5 of Rd. line well is 100'E of w. line 9 | NOT USED ☐ OTHER CABLE TOOL 6 🗌 BORING **METHOD** ROTARY (CONVENTIONAL) 7 DIAMOND OF 3 | ROTARY (REVERSE) 9 DRIVING DRILLING DRILLERS REMARKS: 5 AIR PERCUSSION

ONLY

OFFICE

12,71

4804

080971

CSS.58

4804

eme

CONTRACTOR

Ministr	ry	^		-,	The (Ontario V	Mater Resour	ces Act 46C	1/20
of the Enviro	nment	V	WA	TE	ER	WE	ELL	REC	ORD
Ontario -	1. PRINT ONLY IN S 2. CHECK 🗵 CORRE	PACES PROVIDED CT BOX WHERE APPLICABLE	11	4	7058	75	47,00,7	[CON	1 06
COUNTY OR DISTRICT	D	TOWNSHIP, BOROUGH, CI	D X F)	CON	BLOCK, TRACT, SURVEY	13	13 14 13 25-27
		<i>Y</i> (PR#11	' /	rood	1 + 1	<u>, </u>	DATE COMPLETED	44.51
		NG X	010	RC.	ELEVATION (OTO)	Nova	BASIN CODE	DAY 7 MO	4 YR 86
	10 12 5acL0	G OF OVERBURDE	24	בין (MATERIA	J 50	31		1 1 1 1
GENERAL COLOUR	MOST COMMON MATERIAL	20 4768	OIO ATERIALS	1000	1070		L DESCRIPTION	 	EPTH - FEET
BROWN	CLAY			···		······································		FROM	
	LLAY	SAND				DEN	SE	4	
GREY	CLAY	SAND	STON	<i>(</i> -55			ENTED	\$ 8°	
WHITE :	SAND	STONES				4		110	
GREY C	CLAY	STONE 5		- ···-				2/3	5 242
	HALE		· · · · · ·			-		24	2 244
GREY L	IMESTON	IE					· · · · · · · · · · · · · · · · · · ·	24	4 248
,									
*									
31	لتنا لبليا	سبا لبلبل		سا ل	ШП	با لىلى			
32 10 14 15 WATER		32		43		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OF OPENING 31		75 50
WATER FOUND	RECORD L	51 CASING &	OPEN HOLE	RECC		Z (SLOT N	0 1	-33 DIAMETER 34-3	
10-13 1 PARE	SH 3 SULPHUR 14 TY 4 MINERAL	INCHES 10-II 1 STEEL 1.	THICKNESS INCHES	FROM	TO 13-16	MATERIA	AL AND TYPE	DEPTH TO TO OF SCREEN	OP 41-44 30
15-18 1 G FRE	SH 3 SULPHUR 19	GALVANIZED CONCRETE OPEN HOLE	188	0	244	61	PLUGGING	& SEALING RE	CORD
20-23 1 FRE	SH ³ SULPHUR ²⁴	17-18 STEEL GALVANIZED	9 ;		20-23	DEPTH SET	AT - FEET	TERIAL AND TYPE	CEMENT GROUT.
25-28 1 FRE	TY 4 MINERAL SH 3 SULPHUR 29	5 CONCRETE	2	44	248	10-13	14-17	And the second s	
	TY 4 MINERAL SH J SULPHUR 34 10	24-25 STEEL 24 2 GALVANIZED 3 CONCRETE			27-30	18-21	22-25		
2 [] SALT	TY 4 MINERAL						30-35 40		
71 PUMPING TEST HETHOD	BAILER 20	JI-14 DURATION OF P	_			LO	CATION OF	WELL	
LEVEL	ER LEVEL 25 ND OF WATER LEVE IMPING		PUMPING RECOVERY		IN DIAC	GRAM BELOW NE. INDIC	SHOW DISTANCES OF	OF WELL FROM ROAD	DAND
1 1 1 1 1 1 7	00	30 MINUTES 45 MINUTES	35-37			%	1	CURR	FC
Z IF FLOWING. GIVE RATE	FEET FEET 38-41 PUMP INTAKE SET	AT WATER AT END				W00 P	STOCK	2044	
IF FLOWING, GIVE RATE RECOMMENDED PUMP TYPE	GPM / D C	FEET 1 CLEAR 43-45 RECOMMENDED PUMPING	2 CLOUDY	•			7		
	SEEP SETTING	O O FEET RATE	Z <i>O</i> _{GPM}			١		N —	-
FINAL 51 '	ATER SUPPLY	S ABANDONED, INSUE	FFICIENT SUPPLY			(2)	15/		
STATUS ;	☐ OBSERVATION WELL ☐ TEST HOLE ☐ RECHARGE WELL	# ABANDONED POOR T UNFINISHED	QUALITY				ا ا)5F	
55-56	DOMESTIC 5	COMMERCIAL					1	,	
WATER ,	☐ IRRIGATION 7	☐ MUNICIPAL ☐ PUBLIC SUPPLY ☐ COOLING OR AIR CONDI	ITIONING				4350/	X	
57	OTHER	• NOT				114.		BAR	J
METHOD 2	CABLE TOOL ROTARY (CONVENTION ROTARY (REVERSE)					- July	4		
DRILLING 4	ROTARY (AIR) AIR PERCUSSION	■ ☐ JETTING ■ ☐ DRIVING							
NAME OF WELL CONTRA		LIC	ENCE NUMBER		ERS REMARKS	58 CONTA	AACTOR 59-62 DAT	E REPLYED!	63-68 80
155		DRILLING	5565	ΙźĹ	OURCE	ION	INSPECTOR	<u>07.05</u>	86
	IUGERSO	LL Tue	ENCE NUMBER	JSE	5,5	87			7
	ATMAN	SUBMISSION DATE	4009	OFFICE 1	EMARKS				7
Rolph	m cho	DAY MO	YR	OFF				CSS	
MINISTRY OF THE	E ENVIRONMENT	COPY						FORM NO. 05	06-4-77 FORM 7

Well Record

Regulation 903 Ontario Water Resources Act

Ontario

Ministry of the Environment and Climate Change

Measurements recorded in:

Metric Imperial

Mell Tag No. Tag#: A188068

A 188068 A 188068 Page of

Address of V	Vell Location (Street Number/Name)		Township		Lot		Concessio	n	<u> </u>
	62 GUNNSHILL ROAT)	NoRWICH City/Town/Village		14	Provin	7	Poeta	al Code
	rict/Municipality		WooDSToc	K		Onta			57118
UTM Coordin	nates Zone Easting Northing	700	Municipal Plan and Subl	ot Number		Other			homeomorphism of the control of the
	8 3 1 7 5 3 5 8 4 8 47 6 n and Bedrock Materials/Abandonmen		cord (see instructions on the	e back of this form)					
General Col	four Most Common Material	0	ther Materials	Gener	al Description			Dep From	pth (m(ft))
BRN	CLAY		*					0	13
BRN	CLAY	CCE	BBLE	HARD				13	17
GRY	GRAVEL	SA					1001	17	42
GRY	SAND	GRI	AVEL					42	48

									* .
	Annular Space			R	esults of We	II Yiel	d Testing		
Depth Set From	at (n(ft) Type of Sealant Us To (Material and Type		Volume Placed (m³/ft³)	After test of well yield, w		Dra Time	aw Down Water Leve		Recovery Water Level
0	25 BENTONITE - BE	ENSEAL		Other, specify		(min) Static	(np(ft))	(min)	(n(/ft))
25	48 GRAVEL			If pumping discontinued	I, give reason:	Level	20.6		33.0
				Pump intake set at (m.	/ /// /		24.8	1	31.1
				Trump make set at pri		2	27.3	2	29.9
Metho	od of Construction	Well L	lse	Pumping rate (I/min G	(PM)	3	29.0	3	28.7
☐ Cable Too		☐ Comm		Duration of pumping		10000000	30.2	4	27.4
Rotary (Re	everse) Driving Livestock	☐ Test F	lole Monitoring	hrs + o mi		Visit in the	31.6	5	26.7
☐ Boring ☐ Air percus			g & Air Conditioning	33	pumping (revis)	10	32.3	10	260
Other, spe	Construction Record - Casing	cify	Status of Well	If flowing give rate (I/mi	in / GPM)	15	32.8	15	25.3
Inside	Open Hole OR Material Wall [Depth (n(/ft)	Water Supply	Recommended pump	depth (n(ft))	20	33.0	20	24.9
Diameter (cm(in)	(Galvanized, Fibreglass, Concrete, Plastic, Steel) Thickness (cm(in)) From	n To	Replacement Well	Recommended pump	rato	25	33.0	25	53.5
6/4	STEEL . 188 +2.	5 38	Recharge Well Dewatering Well	(I/min / GPM)	iate	30	33.0	30	27.66
674	STEEL 188 40	0 48	Observation and/or Monitoring Hole	Well production (I/min ((GPM)	40	33.0	40	20.3
			Alteration (Construction)	Disinfected?			33,0	50	20.0
			Abandoned, Insufficient Supply	Yes No	MANAGEMENT (DEEL MANAGEMENT (MANAGEMENT CONTROL	60	<u>33.0</u>	60	0.06
Outside	Construction Record - Screen	epth (m(ft)	Abandoned, Poor Water Quality	Please provide a map b	Map of We elow following i			ack.	
Diameter (cm(in)	Material Plastic, Galvanized, Steel) Slot No. From		Abandoned, other, specify	l.				1	N
65/8	STAINLESS STEEL 10 38	3 46			-	barns	5		N
			Other, specify						Y
N-1 E	Water Details		Hole Djameter	18	shed			i	
	at Depth Kind of Water: ☑Fresh ☐ Unter ☐ Gas ☐ Other, specify	From From	oth (m(ft) Diameter (cn(in))	15			1 179	5	
Nater found	at Depth Kind of Water: Fresh Unter	sted O	48 9	12	house		well of	1	
	t) Gas Other, specify at Depth Kind of Water: Fresh Unter	sted		o o o		4	300		
. (m/ft	f) Gas Other, specify				rain yang Marak				
Business Nan	Well Contractor and Well Techn ne of Well Contractor		ation /ell Contractor's Licence No.	GUNNSHILL	- RD				,
MCLER		TD.	7 3 4 3		Na sasan	gale a rag			
_ 100	ress (Street Number/Name) TOWNSEND LINE		unicipality ERWOOD	Comments: HIDDLE	TOWN L	INE	3000	EA	IST
	Postal Code Business E-mail	Address			a Prancy'		are a second		
Sus. Telephone	16 Noma Bomcleady No. (inc. area code) Name of Well Technicia	raterwel	Ils Gmaulican First Name)	information	kage Delivered		Minis Audit No.Z	try Use	1487
5190	47305B / . HITT	HELL.	INES	delivered Data Wa	5 ○ 9 ≥ rk Completed	1		44.	1401
3 8	's Licence No. Signatury of Technician and/o	N/	ate Submitted	☑ Yes	5093	الالو	OCT	162	2015
506E (2014/11)	The state of the s	1 2	Ministry's Copy	And the second s	10 - 11 6		2002		r Ontario, 2014

The Ontario Water Resources Act WATER WELL RECORD

Onta	urio Enviror	1. PRINT ON	LY IN SPACES PROVIDE		11	47065	17	4700	7 [5,0	N.,,	1,07
COUNT	Y OR DISTRICT	2. 6//2011		BOROUGH CITY, 1	TOWN. VILLAGE		CON	BLOCK, TRACT, SUR			14
					<i>t</i> (9000)	STOCK O	NT 1910		DATE COMP	MO 12	18-53 YR. 89
					+, WOOD.	STOCK, O		BASIN CODE	1 "	111	. 'V
1 2	, M	10 12	17	67 7		26	30	31		<u> </u>	47
		MOST	LOG OF OVI			OCK MATERIA		NSTRUCTIONS)			- FEET
	RAL COLOUR	CLAY	L	OTHER MATE	RIALS		- CHERA	TE DESCRIPTION		FROM	3
-			W 40.0							3	16
		CLAY	HARD							16	37
		GRAVEL GRAVEL	LOOS	ç						37	40
	/KC9	GRAVEL	2003								
										-	
							<u></u>				
-											
-											
31	<u></u>										
32]] [عللييا	ا لىلىل		يا لنك	للللا	75 80
41		R RECORD	51	CASING & C	PEN HOLE		Z SIZE	SI OF OPENING T NO) 10	31-33 DIAM	6	39-40 3 FEET
WATE	- FEET	KIND OF WATER	INSIDE DIAM INCHES	MATERIAL	WALL THICKNESS INCHES	DEPTH - FEET ROM TO	CC MATE	erial and type	Staal	DEPTH TO TOP OF SCREEN	41-44 30
	40	O LIGAS	LS 1 2 3	STEEL DGALVANIZED CONCRETE	.188	0 37					FEET
	15-18 1 F		LS 5	OPEN HOLE DPLASTIC	. 700	20-2	61 DEPTH	PLUGG SET AT - FEET	NG & SEA	(CEN	MENT GROUT
	20-23		LLS 3	STEEL GALVANIZED CONCRETE OPEN HOLE			FROM	10 0-13 14-17		LEAU	PACKER, EICT
	25-26 1 F		LS 24-25 1	DPLASTIC 26		27.3	10	1.21			
	30-33 1 D F		UR 34 0 3	GALVANIZED CONCRETE OPEN HOLE PLASTIC				30-33	10		
<u></u>	PUMPING TEST METHO		PING RATE 11	-14 DURATION OF PU			l l	OCATION	OF WE	.L	
[7]		BAILER VATER LEVEL 25		1 [7]	IRS 30 MINS		DIAGRAM BEL	OW SHOW DISTA	NCES OF WELL	FROM ROAD	AND
ST	LEVEL 19-21	PUMPING	MINUTES 30 MINUTES	2 [_] 5 45 MINUTES	RECOVERY 60 MINUTES	-	I LINE IN	DICKTE NORTH 5	ARION	1	
G TEST	12 FEET	24 FEET -	FEET FE		EET FEET	-			A	.)-L	9 /
PUMPING	IF FLOWING. GIVE RATE	GPM PUM	24		S ☐ CFONDA				1 /	150 ==	ELL
P.	RECOMMENDED PUMP	PUM		RECOMMENDED PUMPING RATE	12 GPM	•		2.65	: //		<i>E F</i>
L	50-53					M ←	- /	km	L / .	'S PILLES	
	FINAL STATUS	1 WATER SU 2 DBSERVAT	TION WELL .	ABANDONED, INSUI ABANDONED POOR						- 6	
	OF WELL	1 TEST HOL		UNFINISHED DEWATERING		<u> </u>		59 Hw	, /		
	WATER	DOMESTIC DOMESTIC TO STOCK	€ ☐ MUN	ICIPAL		_x					
	USE	4 INDUSTRI	IAL COO	LING OR AIR COND		CURPI	dz		/		
-	57	CABLE TO	00L	● □ BORING		 /		/	•		
	METHOD OF	3 ROTARY		7 DIAMOND B DETTING DRIVING				,		4	6851
	ONSTRUCTIO	S AIR PERC		□ DIGGING		DRILLERS RE					
œ.	MC / EO		RILLING	LICE	L CONTRACTOR' NCE NUMBER 3563	DATA SOURCE	50		3 DATE RECEIVE	N 20 K	389
CTO	ADDRESS		RSOLL, ON			O DATE OF II	NSPECTION	INSPECTO			DU
ONTRACTOR	NAME OF WELL	TECHNICIAN		WEL	L TECHNICIAN'S						
S No	David	D. Oatmo	RACTOR	SUBMISSION DATE	T-0067	OFFICE			C	SS.38	
	trulysh	11. The X	cool	DAY MO.	YR	ביי ו					6 (11 /96) FORM 9

APPENDIX

B

LABORATORY
CERTIFICATES OF ANALYSIS

Phone: 705-652-2000 FAX: 705-652-6365

WSP Canada Inc.

Attn: Albert Siertsema

55 King Street, Suite 700 St. Catharines, ON L2R 3H5, Canada

Phone: 905-687-1771 x 240

Fax:

Project: 191-06761-02-100-1002,

Blandford-Blenheim Landfill Site SW

30-March-2022

Date Rec. : 23 March 2022 LR Report: CA40368-MAR22

Reference: 191-06761-02-100-1002, Albert

Siertsema

Copy: 1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	2: Analysis Start Time Co	3: Analysis ompleted Date Co	4: Analysis mpleted Time	5: SW1	6: SW2	7: SW3	8: SW DUP	9: Trip Blank
Sample Date & Time					22-Mar-22 11:00	22-Mar-22 10:40	22-Mar-22 10:20	22-Mar-22	22-Mar-22
Temp Upon Receipt [°C]	***	***	***	***	***	***	***	***	***
BOD5 [mg/L]	23-Mar-22	17:18	28-Mar-22	15:20	< 4	4	< 4	< 4	
Conductivity [uS/cm]	24-Mar-22	14:07	30-Mar-22	15:14	182	310	437	321	
TSS [mg/L]	24-Mar-22	13:21	28-Mar-22	13:38	4	7	10	7	
pH [No unit]	24-Mar-22	14:07	25-Mar-22	11:06	7.83	7.91	7.66	7.88	
TDS [mg/L]	24-Mar-22	15:31	28-Mar-22	13:21	100	166	306	169	
COD [mg/L]	25-Mar-22	09:55	28-Mar-22	15:20	< 8	28	25	27	
Alkalinity [mg/L as CaCO3]	24-Mar-22	14:07	25-Mar-22	11:06	76	153	264	158	
CI [mg/L]	24-Mar-22	21:45	28-Mar-22	21:51	11	6.5	13	6.5	
SO4 [mg/L]	24-Mar-22	21:45	28-Mar-22	16:39	2.0	2.2	5.0	2.2	
NO2 [as N mg/L]	24-Mar-22	15:47	25-Mar-22	13:21	< 0.03	< 0.03	< 0.03	< 0.03	
NO3 [as N mg/L]	24-Mar-22	15:47	25-Mar-22	13:21	< 0.06	0.76	0.07	0.76	
NO2+NO3 [as N mg/L]	24-Mar-22	15:47	25-Mar-22	13:21	< 0.06	0.76	0.07	0.76	
TKN [as N mg/L]	24-Mar-22	15:26	25-Mar-22	10:21	< 0.5	4.1	3.6	4.1	
NH3+NH4 [as N mg/L]	24-Mar-22	16:21	25-Mar-22	12:25	< 0.1	3.8	3.2	3.8	
Total P [mg/L]	26-Mar-22	10:42	28-Mar-22	11:22	< 0.03	< 0.03	< 0.03	< 0.03	
4AAP-Phenolics [mg/L]	29-Mar-22	10:35	30-Mar-22	11:04	< 0.002	0.002	< 0.002	< 0.002	
Hg (diss) [mg/L]	28-Mar-22	09:14	28-Mar-22	13:01	< 0.00001	< 0.00001	< 0.00001	< 0.00001	
As (tot) [mg/L]	25-Mar-22	10:30	28-Mar-22	11:57	0.0003	0.0003	0.0006	0.0007	

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

Blandford Blandfill Site SW LR Report :

Analysis	1:		3:	4:	5:	6:	7:	8:	9:
	Analysis Start Date	Analysis Start Time C	Analysis ompleted Date Co	Analysis mpleted Time	SW1	SW2	SW3	SW DUP	Trip Blank
Ba (tot) [mg/L]	25-Mar-22	10:30	28-Mar-22	11:57	0.00911	0.0219	0.0445	0.0228	
B (tot) [mg/L]	25-Mar-22	10:30	30-Mar-22	13:45	0.006	0.055	0.078	0.060	
Cd (tot) [mg/L]	25-Mar-22	10:30	28-Mar-22	11:57	0.000008	0.000030	0.000009	0.000042	
Cr (tot) [mg/L]	25-Mar-22	10:30	28-Mar-22	11:57	0.00026	0.00037	0.00024	0.00048	
Cu (tot) [mg/L]	25-Mar-22	10:30	28-Mar-22	11:57	0.0021	0.0029	0.0008	0.0024	
Fe (tot) [mg/L]	25-Mar-22	10:30	28-Mar-22	11:57	0.088	1.26	1.41	1.31	
Pb (tot) [mg/L]	25-Mar-22	10:30	28-Mar-22	11:57	0.00009	0.00125	0.00015	0.00125	
Zn (tot) [mg/L]	25-Mar-22	10:30	28-Mar-22	11:57	0.004	0.005	0.005	0.006	
Benzene [ug/L]	25-Mar-22	19:23	28-Mar-22	14:11	< 0.5	< 0.5	< 0.5		< 0.5
1,4-Dichlorobenzene [µg/L]	25-Mar-22	19:23	28-Mar-22	14:11	< 0.5	< 0.5	< 0.5		< 0.5
Dichloromethane [µg/L]	25-Mar-22	19:23	28-Mar-22	14:11	< 0.5	< 0.5	< 0.5		< 0.5
Toluene [ug/L]	25-Mar-22	19:23	28-Mar-22	14:11	< 0.5	< 0.5	< 0.5		< 0.5
Vinyl Chloride [µg/L]	25-Mar-22	19:23	28-Mar-22	14:11	< 0.2	< 0.2	< 0.2		< 0.2

Temperature of Sample upon Receipt: 3 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: N/A

Method Descriptions

Parameter	Description	SGS Method Code
1,4-Dichlorobenzene	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
4AAP-Phenolics	phenol by Skalar -solution	ME-CA-[ENV]SFA-LAK-AN-006
Alkalinity	Alkalinity by Titration	ME-CA-[ENV]EWL-LAK-AN-006
Ammonia+Ammonium (N)	NH3+NH4 by Skalar - solution	ME-CA-[ENV]SFA-LAK-AN-007
Arsenic (total)	Asby ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006
Barium (total)	Ba by ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006
Benzene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004
Biochemical Oxygen Demand (BOD5)	Biochemical Oxygen Demand (BOD5)	ME-CA-[ENV]EWL-LAK-AN-007
Boron (total)	B by ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006
Cadmium (total)	Cd by ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006
Chemical Oxygen Demand	Chemical Oxygen Demand	ME-CA-[ENV]EWL-LAK-AN-009

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report: Blandford Blendford Landfill Site SW

Parameter	Description	SGS Method Code
Chloride	Chloride by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Chromium (total)	Cr by ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006
Conductivity	Conductivity by Conductivity Meter	ME-CA-[ENV]EWL-LAK-AN-006
Copper (total)	Cu by ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006
Dichloromethane	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
ron (total)	Fe by ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006
Lead (total)	Pb by ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006
Mercury (dissolved)	Hg solutions by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004
Nitrate (as N)	Nitrate by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Nitrate + Nitrite (as N)	Total Nitrate/Nitrite by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Nitrite (as N)	Nitrite by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Н	pH - solution	ME-CA-[ENV]EWL-LAK-AN-006
Phosphorus (total)	Total Phos. By Skalar - complete digestion	ME-CA-[ENV]SFA-LAK-AN-003
Sulphate	Sulphate by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Toluene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004
Total Dissolved Solids	Total Dissolved Solids by Gravimetric	ME-CA-[ENV]EWL-LAK-AN-005
Total Kjeldahl Nitrogen	Tot. kjeldahl Nitrogen by Skalar	ME-CA-[ENV]SFA-LAK-AN-002
Total Suspended Solids	Total Suspended Solids	ME-CA-[ENV]EWL-LAK-AN-004
Vinyl Chloride	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
Zinc (total)	Zn by ICP-MS solution	ME-CA-[ENV]SPE-LAK-AN-006

Brad Moore Hon. B.Sc

Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report: Blandford Blendford Landfill Site SW

Quality Control Report

				Oı	ganic Analysi	s							
Parameter	Reporting	Unit	Method		• •	icate		LC	S / Spike Blan	ık	Matrix Spik	ce / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery	Limits (%)	Spike Recovery (%)	Recovery L	, ,
							%		Low	High		Low	High
Volatile Organics - QCBatchID: GCM0469-MAR22													
1,4-Dichlorobenzene	0.5	ug/L	<0.5			ND	30	99	60	130	99	50	140
Benzene	0.5	Ū	<0.5			ND	30	100	60	130	100	50	140
Dichloromethane	0.5	ug/L	<0.5			ND	30	99	60	130	99	50	140
Toluene	0.5	ug/L	<0.5			ND	30	100	60	130	98	50	140
Vinyl Chloride	0.2	ug/L	<0.2			ND	30	114	50	140	115	50	140
				Inc	rganic Analys	is							
Parameter	Reporting	Unit	Method			icate			S / Spike Blan			ce / Reference	
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery	Limits (%)	Spike Recovery (%)	Recovery L	imits (%)
							%		Low	High		Low	High
Alkalinity - QCBatchID: EWL0441-MAR22													
Alkalinity	2	mg/L as Ca	< 2			1	20	102	80	120	NA		
Alkalinity - QCBatchID: EWL0442-MAR22	_												
Alkalinity	2	mg/L as Ca	< 2			0	20	106	80	120	NA		
Ammonia by SFA - QCBatchID: SKA0217-MAR22	_												
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			ND	10	100	90	110	93	75	125
Anions by IC - QCBatchID: DIO0425-MAR22													
Nitrate (as N)	0.06	mg/L	<0.06			0	20	100	90	110	98	75	125
Nitrate + Nitrite (as N)	0.06	mg/L	<0.06			NA		NA			NA		
Nitrite (as N)	0.03	mg/L	<0.03			ND	20	101	90	110	99	75	125
Anions by IC - QCBatchID: DIO0465-MAR22													
Chloride	0.2	mg/L	<0.2			ND	20	103	90	110	108	75	125
Anions by IC - QCBatchID: DIO0481-MAR22													
Sulphate	0.2	mg/L	<0.2			2	20	94	90	110	80	75	125
Biochemical Oxygen Demand - QCBatchID: BOD0045-M/	4 <i>R</i> 22												
Biochemical Oxygen Demand (BOD5)	2	mg/L	< 2			17	30	108	70	130	97	70	130
Chemical Oxygen Demand - QCBatchID: EWL0461-MAR.	22												
Chemical Oxygen Demand	8	mg/L	<8			11	20	90	80	120	110	75	125
Conductivity - QCBatchID: EWL0441-MAR22													
Conductivity	2	uS/cm	< 2			9	20	99	90	110	NA		
Conductivity - QCBatchID: EWL0442-MAR22													
Conductivity	2	uS/cm	< 2			0	20	100	90	110	NA		
Mercury by CVAAS - QCBatchID: EHG0046-MAR22													
Mercury (dissolved)	0.00001	mg/L	< 0.00001			ND	20	82	80	120	116	70	130
Metals in aqueous samples - ICP-MS - QCBatchID: EMS0	0196-MAR22												

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report: Blandford Blendford Landfill Site SW

				Inc	organic Analys	sis							
Parameter	Reporting	Unit	Method		Dupl	licate		LC	S / Spike Blan	k	Matrix Spi	ke / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery I	imits (%)	Spike Recovery (%)	Recovery	Limits (%)
							%		Low	High		Low	High
Arsenic (total)	0.0002	mg/L	<0.0002			ND	20	109	90	110	118	70	130
Barium (total)	0.00002	mg/L	<0.00002			0	20	95	90	110	108	70	130
Boron (total)	0.002	mg/L	<0.002			ND	20	100	90	110	91	70	130
Cadmium (total)	0.000003	mg/L	<0.000003			ND	20	96	90	110	103	70	130
Chromium (total)	0.00008	mg/L	<0.00008			ND	20	92	90	110	88	70	130
Copper (total)	0.0002	mg/L	<0.0002			ND	20	99	90	110	108	70	130
Iron (total)	0.007	mg/L	<0.007			ND	20	107	90	110	108	70	130
Lead (total)	0.00009	mg/L	<0.00001			ND	20	95	90	110	89	70	130
Zinc (total)	0.002	mg/L	<0.002			ND	20	108	90	110	108	70	130
Metals in aqueous samples - ICP-MS - QCBatchID: EMS	S0206-MAR22												
Boron (total)	0.002	mg/L	<0.002			2	20	101	90	110	100	70	130
pH - QCBatchID: EWL0441-MAR22			•		•		•						
pH	0.05	No unit	NA			0		100			NA		
pH - QCBatchID: EWL0442-MAR22													
pH	0.05	No unit	NA			0		100			NA		
Phenols by SFA - QCBatchID: SKA0253-MAR22													
4AAP-Phenolics	0.002	mg/L	<0.002			ND	10	96	80	120	93	75	125
Phenols by SFA - QCBatchID: SKA0260-MAR22													
4AAP-Phenolics	0.002	mg/L	<0.002			ND	10	102	80	120	100	75	125
Phosphorus by SFA - QCBatchID: SKA0234-MAR22													
Phosphorus (total)	0.03	mg/L	< 0.03			ND	10	94	90	110	94	75	125
Solids Analysis - QCBatchID: EWL0446-MAR22			•		•		•						
Total Dissolved Solids	30	mg/L	<30			2	20	92	90	110	NA		
Suspended Solids - QCBatchID: EWL0435-MAR22			•	•	•		•						
Total Suspended Solids	2	mg/L	< 2			1	10	104	90	110	NA		
Suspended Solids - QCBatchID: EWL0453-MAR22			•	•	•	•	•						
Total Suspended Solids	2	mg/L	< 2			1	10	95	90	110	NA		
Total Nitrogen - QCBatchID: SKA0220-MAR22			•	•	•	•							
Total Kjeldahl Nitrogen	0.5	as N mg/L	<0.5			1	10	103	90	110	103	75	125

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

28-April-2022

Date Rec.: 18 April 2022 **LR Report: CA12714-APR22**

Project: 191-06761-02-100-1002,

Gunn's Hill Landfill Site - GW

Albert Siertsema

Reference: 191-06761-02-100-1002,

Copy: 1

WSP Canada Inc.

Attn: Albert Siertsema

55 King Street, Suite 700 St. Catharines, ON L2R 3H5, Canada

Phone: 905-687-1771 x 240

Fax:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	7:	8:
	Analysis	Analysis	Analysis	Analysis	BB-BH 1-1	BB-BH 1-2
	Start Date	Start Time	Completed Date	Completed Time		
Sample Date & Time					18-Apr-22 09:45	18-Apr-22 10:00
Temp Upon Receipt [°C]	***	***	***	***	***	***
Alkalinity [mg/L as CaCO3]	19-Apr-22	15:05	20-Apr-22	15:25	304	1150
pH [No unit]	19-Apr-22	15:05	20-Apr-22	15:25	7.86	7.15
Conductivity [uS/cm]	19-Apr-22	15:05	20-Apr-22	15:25	573	2110
TDS [mg/L]	19-Apr-22	08:48	20-Apr-22	14:17	331	780
COD [mg/L]	20-Apr-22	12:16	20-Apr-22	16:02	< 8	116
NH3+NH4 [as N mg/L]	22-Apr-22	09:10	25-Apr-22	15:20	< 0.1	112
TKN [as N mg/L]	19-Apr-22	15:13	22-Apr-22	14:46	2.46	122
Total P [mg/L]	19-Apr-22	15:32	20-Apr-22	08:40	0.12	0.60
4AAP-Phenolics [mg/L]	21-Apr-22	09:33	21-Apr-22	18:41	< 0.002	0.008
SO4 [mg/L]	21-Apr-22	10:48	22-Apr-22	16:45	12	< 2
CI [mg/L]	21-Apr-22	12:17	25-Apr-22	09:51	15	31
NO2 [as N mg/L]	20-Apr-22	07:27	22-Apr-22	14:40	< 0.03	< 0.3
NO3 [as N mg/L]	20-Apr-22	07:27	22-Apr-22	14:40	2.53	< 0.06
DOC [mg/L]	20-Apr-22	13:37	22-Apr-22	09:58	2	27
Hg (diss) [mg/L]	21-Apr-22	09:00	22-Apr-22	09:35	< 0.00001	< 0.00001
As (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.0004	0.0014
Ba (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.0398	0.217
B (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.125	0.765
Ca (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	92.4	184
Cd (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.000137	0.000003
Cr (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.00014	0.00376
Cu (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.0022	0.0006
Fe (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.045	44.3
K (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	3.81	70.4
Mg (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	18.9	48.9

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report: Gunn's Hill Landfill Site - GW

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed	4: Analysis Completed	7: BB-BH 1-1	8: BB-BH 1-2
			Date	Time		
Mn (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.657	0.701
Na (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	4.30	50.4
Pb (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.00014	< 0.00009
Zn (diss) [mg/L]	22-Apr-22	19:46	25-Apr-22	10:19	0.026	0.011
Benzene [µg/L]	26-Apr-22	13:00	28-Apr-22	16:44	< 0.5	5.9
1,4-Dichlorobenzene [µg/L]	26-Apr-22	13:00	28-Apr-22	16:44	< 0.5	2.6
Dichloromethane [µg/L]	26-Apr-22	13:00	28-Apr-22	16:44	< 0.5	< 0.5
Toluene [ug/L]	26-Apr-22	13:00	28-Apr-22	16:44	< 0.5	0.5
Vinyl Chloride [µg/L]	26-Apr-22	13:00	28-Apr-22	16:44	< 0.2	< 0.2

Temperature of Sample upon Receipt: 2 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: N/A

Raised RL for NO2 on BB-BH 1-2 due to sample matrix

Method Descriptions

Parameter	Description	SGS Method Code
1,4-Dichlorobenzene	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
4AAP-Phenolics	phenol by Skalar -solution	ME-CA-[ENV]SFA-LAK-AN-006
Alkalinity	Alkalinity by Titration	ME-CA-[ENV]EWL-LAK-AN-006
Ammonia+Ammonium (N)	NH3+NH4 by Skalar - solution	ME-CA-[ENV]SFA-LAK-AN-007
Arsenic (dissolved)	As by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Barium (dissolved)	Ba by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Benzene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004
Boron (dissolved)	B by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Cadmium (dissolved)	Cd by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Calcium (dissolved)	Ca by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Chemical Oxygen Demand	Chemical Oxygen Demand	ME-CA-[ENV]EWL-LAK-AN-009
Chloride	Chloride by discrete colourmetric analysis	ME-CA-[ENV]EWL-LAK-AN-026
Chromium (dissolved)	Cr by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Conductivity	Conductivity by Conductivity Meter	ME-CA-[ENV]EWL-LAK-AN-006
Copper (dissolved)	Cu by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Dichloromethane	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
Dissolved Organic Carbon	DOC by Skalar	ME-CA-[ENV]SFA-LAK-AN-009
Iron (dissolved)	Fe by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Lead (dissolved)	Pb by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Magnesium (dissolved)	Mg by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Manganese (dissolved)	Mn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Mercury (dissolved)	Hg solutions by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004
Nitrate (as N)	Nitrate by Dionex - solution	ME-CA-[ENV]IC-LAK-AN-001
Nitrite (as N)	Nitrite by Dionex - solution	ME-CA-[ENV]IC-LAK-AN-001
pH	pH - solution	ME-CA-[ENV]EWL-LAK-AN-006

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report: Gunn's Hill Landfill Site - GW

Parameter	Description	SGS Method Code				
Phosphorus (total)	Total Phos. By Skalar - complete digestion	ME-CA-[ENV]SFA-LAK-AN-003				
Potassium (dissolved)	K by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006				
Sodium (dissolved)	Na by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006				
Sulphate	Sulphate by discrete colourmetric analysis	ME-CA-[ENV]EWL-LAK-AN-026				
Toluene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004				
Total Dissolved Solids	Total Dissolved Solids by Gravimetric	ME-CA-[ENV]EWL-LAK-AN-005				
Total Kjeldahl Nitrogen (N)	Tot. kjeldahl Nitrogen by Skalar - drinking water	ME-CA-[ENV]SFA-LAK-AN-002				
Vinyl Chloride	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004				
Zinc (dissolved)	Zn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006				

Maarit Wolfe, Hon.B.S

Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, Gunn's Hill Landfill

LR Report : SiteCAG2414-APR22

Quality Control Report

				Oı	rganic Analysi	s							
Parameter	Reporting	Unit	Method		Dupl	icate		LC	S / Spike Blan	k	Matrix Spik	e / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery L	imits (%)	Spike Recovery (%)	Recovery L	imits (%)
							%		Low	High		Low	High
Volatile Organics - QCBatchID: GCM0448-APR22													
1,4-Dichlorobenzene	0.5	ug/L	<0.5			ND	30	100	60	130	99	50	140
Benzene	0.5	μg/L	<0.5			ND	30	96	60	130	98	50	140
Dichloromethane	0.5	ug/L	<0.5			ND	30	94	60	130	96	50	140
Toluene	0.5	ug/L	<0.5			ND	30	97	60	130	97	50	140
Vinyl Chloride	0.2	ug/L	<0.2			ND	30	94	50	140	95	50	140
				Inc	organic Analys	is					<u> </u>		
Parameter	Reporting	Unit	Method		Dupl	icate		LC	S / Spike Blan	k	Matrix Spik	ce / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery L	imits (%)	Spike Recovery (%)	Recovery L	imits (%)
							%		Low	High		Low	High
Alkalinity - QCBatchID: EWL0359-APR22													
Alkalinity	2	mg/L as Ca	< 2			1	20	109	80	120	NA		
Ammonia by SFA - QCBatchID: SKA0218-APR22													
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			0	10	97	90	110	98	75	125
Ammonia by SFA - QCBatchID: SKA0241-APR22							,						
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			1	10	101	90	110	NV	75	125
Anions by discrete analyzer - QCBatchID: DIO5065-APR22													
Sulphate	2	mg/L	<2			0	20	100	80	120	93	75	125
Anions by discrete analyzer - QCBatchID: DIO5067-APR22	2												
Chloride	1	mg/L	<1			0	20	94	80	120	80	75	125
Anions by IC - QCBatchID: DIO0356-APR22													
Nitrate (as N)	0.06	mg/L	<0.06			ND	20	99	90	110	100	75	125
Nitrite (as N)	0.03	mg/L	<0.03			ND	20	98	90	110	101	75	125
Anions by IC - QCBatchID: DIO0371-APR22													
Nitrite (as N)	0.03	mg/L	<0.03			6	20	100	90	110	101	75	125
Carbon by SFA - QCBatchID: SKA0209-APR22													
Dissolved Organic Carbon	1	mg/L	<1			1	20	103	90	110	93	75	125
Chemical Oxygen Demand - QCBatchID: EWL0382-APR2	2												
Chemical Oxygen Demand	8	mg/L	<8			3	20	116	80	120	115	75	125
Conductivity - QCBatchID: EWL0359-APR22													
Conductivity	2	uS/cm	< 2			1	20	98	90	110	NA		
Mercury by CVAAS - QCBatchID: EHG0040-APR22													
Mercury (dissolved)	0.00001	mg/L	< 0.00001			0	20	83	80	120	91	70	130
Metals in aqueous samples - ICP-MS - QCBatchID: EMS0	159-APR22												
Arsenic (dissolved)	0.0002	mg/L	<0.0002			ND	20	100	90	110	102	70	130

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, Gunn's Hill Landfill

Site_{CA}G2444-APR22 LR Report :

Inorganic Analysis													
Parameter	Reporting	Unit	Method		Dupl	icate		LC	CS / Spike Blar	nk	Matrix Sp	ike / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery	Limits (%)	Spike Recovery (%)	Recovery	Limits (%)
							%		Low	High		Low	High
Barium (dissolved)	0.00008	mg/L	<0.00002			1	20	100	90	110	102	70	130
Boron (dissolved)	0.002	mg/L	<0.002			1	20	94	90	110	102	70	130
Cadmium (dissolved)	0.000003	mg/L	<0.000003			8	20	103	90	110	110	70	130
Calcium (dissolved)	0.01	mg/L	<0.01			2	20	102	90	110	84	70	130
Chromium (dissolved)	0.00008	mg/L	<0.00008			ND	20	99	90	110	91	70	130
Copper (dissolved)	0.0002	mg/L	<0.0002			ND	20	98	90	110	97	70	130
Iron (dissolved)	0.007	mg/L	<0.007			4	20	100	90	110	75	70	130
Lead (dissolved)	0.00009	mg/L	<0.00001			2	20	99	90	110	96	70	130
Magnesium (dissolved)	0.001	mg/L	<0.001			1	20	103	90	110	93	70	130
Manganese (dissolved)	0.00001	mg/L	<0.00001			1	20	105	90	110	103	70	130
Potassium (dissolved)	0.009	mg/L	<0.009			3	20	101	90	110	90	70	130
Sodium (dissolved)	0.01	mg/L	<0.01			15	20	106	90	110	98	70	130
Zinc (dissolved)	0.002	mg/L	<0.002			2	20	107	90	110	100	70	130
pH - QCBatchID: EWL0359-APR22													
рН	0.05	No unit	NA			0		100			NA		
Phenols by SFA - QCBatchID: SKA0202-APR22													
4AAP-Phenolics	0.002	mg/L	<0.002			ND	10	103	80	120	99	75	125
Phosphorus by SFA - QCBatchID: SKA0173-APR22													
Phosphorus (total)	0.03	mg/L	<0.03			ND	10	100	90	110	86	75	125
Solids Analysis - QCBatchID: EWL0344-APR22													
Total Dissolved Solids	30	mg/L	<30			2	20	91	80	120	NA		
Total Nitrogen - QCBatchID: SKA0197-APR22													
Total Kjeldahl Nitrogen (N)	0.05	mg/L	<0.05			6	10	100	90	110	93	75	125
Total Nitrogen - QCBatchID: SKA0217-APR22	<u> </u>												
Total Kjeldahl Nitrogen (N)	0.05	mg/L	<0.05			ND	10	100	90	110	93	75	125

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

WSP Canada Inc.

Attn: Albert Siertsema

55 King Street, Suite 700 St. Catharines, ON L2R 3H5, Canada

Phone: 905-687-1771 x 240

Fax:

Project: 191-06761-02-100-1002,

Blandford-Blenheim Landfill

Site - GW

06-May-2022

Date Rec.: 12 April 2022 LR Report: CA40213-APR22

Reference: 191-06761-02-100-1002,

Albert Siertsema

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed	4: Analysis Completed	5: RL	6: BB-MW1
	Start Date	Start Tille	Date	Time		
Sample Date & Time						11-Apr-22 09:00
Temp Upon Receipt [°C]	***	***	***	***	***	***
Total P [mg/L]	02-May-22	17:19	03-May-22	16:19	0.03	0.73
pH [No unit]	14-Apr-22	13:18	18-Apr-22	10:04	0.05	7.93
Conductivity [uS/cm]	14-Apr-22	13:18	18-Apr-22	10:04	2	1190
Alkalinity [mg/L as CaCO3]	14-Apr-22	13:18	18-Apr-22	10:04	2	597
DOC [mg/L]	27-Apr-22	14:27	06-May-22	09:59	1.0	9.3
CI [mg/L]	18-Apr-22	08:54	20-Apr-22	14:10	1	48
SO4 [mg/L]	21-Apr-22	10:48	27-Apr-22	14:40	2	22
NO2 [as N mg/L]	15-Apr-22	07:03	20-Apr-22	14:44	0.03	< 0.03
NO3 [as N mg/L]	15-Apr-22	07:03	20-Apr-22	14:44	0.06	< 0.06
4AAP-Phenolics [mg/L]	18-Apr-22	10:37	18-Apr-22	15:28	0.002	< 0.002
Hg (diss) [mg/L]	18-Apr-22	08:03	18-Apr-22	11:30	1e-005	< 0.00001
Ca (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17	0.01	118
Mg (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17	0.001	45.5
Na (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17	0.01	35.4
K (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17	0.009	15.4
Hardness [mg/L as CaCO3]	18-Apr-22	21:30	19-Apr-22	10:17		483
As (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		0.0005
Ba (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		0.519
B (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		0.176
Cd (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		< 0.000003
Cr (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		0.00064
Cu (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		0.0003
Fe (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		3.84
Pb (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		< 0.00009
Mn (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		0.0972

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report: Blandford-Blenheim Landfill Site - GW

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: RL	6: BB-MW1
Zn (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:17		0.002
TDS [mg/L]	13-Apr-22	18:14	18-Apr-22	13:24	30	617
COD [mg/L]	14-Apr-22	08:00	18-Apr-22	12:55	8	30
TKN [as N mg/L]	13-Apr-22	16:05	18-Apr-22	13:12	0.5	24.6
NH3+NH4 [as N mg/L]	13 Apr 22	20:45	18-Apr-22	11:31	0.1	23.9
Benzene [ug/L]	20-Apr-22	18:22	26-Apr-22	13:56		< 0.5
1,4-Dichlorobenzene [µg/L]	20-Apr-22	18:22	26-Apr-22	13:56		< 0.5
Dichloromethane [µg/L]	20-Apr-22	18:22	26-Apr-22	13:56		< 0.5
Toluene [ug/L]	20-Apr-22	18:22	26-Apr-22	13:56		< 0.5
Vinyl Chloride [µg/L]	20-Apr-22	18:22	26-Apr-22	13:56		< 0.2

Analysis	7:	8:	9:	10:	11:
	BB-MW2	BB-MW3	BB-P1	BB-BWDUP	Trip Blank
Sample Date & Time	11-Apr-22 11:00	11-Apr-22 11:45	11-Apr-22 10:30	11-Apr-22	11-Apr-22
Temp Upon Receipt [°C]	***	***	***	***	***
Total P [mg/L]	0.05	< 0.03	< 0.03	< 0.03	
pH [No unit]	8.13	8.20	8.08	8.06	
Conductivity [uS/cm]	651	381	557	561	
Alkalinity [mg/L as CaCO3]	248	213	295	297	
DOC [mg/L]	1.1	1.3	1.5	1.4	
CI [mg/L]	27	3	2	2	
SO4 [mg/L]	73	7	5	5	
NO2 [as N mg/L]	0.14	< 0.03	< 0.03	< 0.03	
NO3 [as N mg/L]	0.70	0.34	5.28	5.28	
4AAP-Phenolics [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	
Hg (diss) [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	
Ca (diss) [mg/L]	90.5	56.3	82.3	83.4	
Mg (diss) [mg/L]	31.1	10.9	22.4	22.3	
Na (diss) [mg/L]	5.02	13.2	4.94	4.82	
K (diss) [mg/L]	1.34	0.833	5.12	5.16	
Hardness [mg/L as CaCO3]	354	186	298	300	
As (diss) [mg/L]	0.0011	0.0009	< 0.0002	< 0.0002	
Ba (diss) [mg/L]	0.0633	0.0104	0.0304	0.0301	
B (diss) [mg/L]	0.013	0.018	0.045	0.046	
Cd (diss) [mg/L]	0.000005	0.000003	0.000007	0.000006	
Cr (diss) [mg/L]	0.00014	0.00057	0.00096	0.00067	
Cu (diss) [mg/L]	0.0008	0.0011	0.0048	0.0046	
Fe (diss) [mg/L]	0.198	< 0.007	< 0.007	< 0.007	
Pb (diss) [mg/L]	0.00019	< 0.00009	0.00017	0.00017	
Mn (diss) [mg/L]	0.0318	0.00477	0.00024	0.00029	

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report : Blandford-Blenheim Landfill Site - GW

Analysis	7:	8:	9:	10:	11:
·	BB-MW2	BB-MW3	BB-P1	BB-BWDUP	Trip Blank
Zn (dian) [ma/l]	0.004	0.002	0.240	0.202	
Zn (diss) [mg/L]	0.004	0.003	0.218	0.202	
TDS [mg/L]	420	234	346	317	
COD [mg/L]	11	< 8	< 8	< 8	
TKN [as N mg/L]	< 0.5	1.6	< 0.5	< 0.5	
NH3+NH4 [as N mg/L]	0.2	< 0.1	< 0.1	< 0.1	
Benzene [ug/L]	< 0.5	< 0.5	< 0.5		< 0.5
1,4-Dichlorobenzene [µg/L]	< 0.5	< 0.5	< 0.5		< 0.5
Dichloromethane [µg/L]	< 0.5	< 0.5	< 0.5		< 0.5
Toluene [ug/L]	< 0.5	< 0.5	< 0.5		< 0.5
Vinyl Chloride [µg/L]	< 0.2	< 0.2	< 0.2		< 0.2

Temperature of Sample upon Receipt: 7 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Method Descriptions

Parameter	Description	SGS Method Code
1,4-Dichlorobenzene	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
4AAP-Phenolics	phenol by Skalar -solution	ME-CA-[ENV]SFA-LAK-AN-006
Alkalinity	Alkalinity by Titration	ME-CA-[ENV]EWL-LAK-AN-006
Ammonia+Ammonium (N)	NH3+NH4 by Skalar - solution	ME-CA-[ENV]SFA-LAK-AN-007
Arsenic (dissolved)	As by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Barium (dissolved)	Ba by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Benzene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004
Boron (dissolved)	B by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Cadmium (dissolved)	Cd by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Calcium (dissolved)	Ca by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Chemical Oxygen Demand	Chemical Oxygen Demand	ME-CA-[ENV]EWL-LAK-AN-009
Chloride	Chloride by discrete colourmetric analysis	ME-CA-[ENV]EWL-LAK-AN-026
Chromium (dissolved)	Cr by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Conductivity	Conductivity by Conductivity Meter	ME-CA-[ENV]EWL-LAK-AN-006
Copper (dissolved)	Cu by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Dichloromethane	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
Dissolved Organic Carbon	DOC by Combustion/Oxidation	ME-CA-[ENV]EWL-LAK-AN-023
Hardness (dissolved)	Hardness (CaCO3) by ICP-MS dissolved	ME-CA-[ENV]SPE-LAK-AN-006
Iron (dissolved)	Fe by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Lead (dissolved)	Pb by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Magnesium (dissolved)	Mg by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Manganese (dissolved)	Mn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Mercury (dissolved)	Hg solutions by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004
Nitrate (as N)	Nitrate by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Nitrite (as N)	Nitrite by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
рН	pH - solution	ME-CA-[ENV]EWL-LAK-AN-006
Phosphorus (total)	Total Phos. By Skalar - complete digestion	ME-CA-[ENV]SFA-LAK-AN-003
Potassium (dissolved)	K by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report : Blandford-Blenheim Landfill Site - GW

Parameter	Description	SGS Method Code					
Sodium (dissolved)	Na by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Sulphate	Sulphate by discrete colourmetric analysis	ME-CA-[ENV]EWL-LAK-AN-026					
Toluene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004					
Total Dissolved Solids	Total Dissolved Solids by Gravimetric	ME-CA-[ENV]EWL-LAK-AN-005					
Total Kjeldahl Nitrogen	Tot. kjeldahl Nitrogen by Skalar	ME-CA-[ENV]SFA-LAK-AN-002					
Vinyl Chloride	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004					
Zinc (dissolved)	Zn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					

Maarit Wolfe, Hon.B.Sc

Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report: Blandford Blandford Blandfill Site - GW

Quality Control Report

				Oı	rganic Analysi	s							
Parameter	Reporting	Unit	Method		Dupl	icate		LC	S / Spike Blan	k	Matrix Spik	e / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery I	Limits (%)	Spike Recovery (%)	Recovery L	imits (%)
							%		Low	High		Low	High
Volatile Organics - QCBatchID: GCM0339-APR22													
1,4-Dichlorobenzene	0.5	ug/L	<0.5			ND	30	91	60	130	93	50	140
Benzene	0.5	ug/L	<0.5			ND	30	90	60	130	94	50	140
Dichloromethane	0.5	ug/L	<0.5			ND	30	89	60	130	88	50	140
Toluene	0.5	ug/L	<0.5			ND	30	90	60	130	92	50	140
Vinyl Chloride	0.2	ug/L	<0.2			ND	30	90	50	140	92	50	140
				Inc	rganic Analys	is							
Parameter	Reporting	Unit	Method		Dupl	icate		LC	S / Spike Blan	k	Matrix Spik	e / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery I	_imits (%)	Spike Recovery (%)	Recovery L	imits (%)
							%		Low	High		Low	High
Alkalinity - QCBatchID: EWL0285-APR22													
Alkalinity	2	mg/L as Ca	< 2			0	20	104	80	120	NA		
Ammonia by SFA - QCBatchID: SKA0125-APR22													
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			0	10	96	90	110	98	75	125
Ammonia by SFA - QCBatchID: SKA0140-APR22													
Ammonia+Ammonium (N)	0.1	as N mg/L	< 0.1			6	10	100	90	110	93	75	125
Anions by discrete analyzer - QCBatchID: DIO5050-APR2	2												
Chloride	1	mg/L	<1			1	20	109	80	120	100	75	125
Anions by discrete analyzer - QCBatchID: DIO5052-APR2	2												
Chloride	1	mg/L	<1			0	20	108	80	120	101	75	125
Anions by discrete analyzer - QCBatchID: DIO5065-APR2													
Sulphate	2	mg/L	<2			0	20	100	80	120	93	75	125
Anions by discrete analyzer - QCBatchID: DIO5078-APR2	2												
Sulphate	2	mg/L	<2			ND	20	97	80	120	106	75	125
Anions by IC - QCBatchID: DIO0265-APR22													
Nitrate (as N)	0.06	mg/L	<0.06			ND	20	99	90	110	99	75	125
Nitrite (as N)	0.03	mg/L	<0.03			ND	20	98	90	110	101	75	125
Anions by IC - QCBatchID: DIO0274-APR22													
Nitrate (as N)	0.06	mg/L	<0.06			0	20	98	90	110	95	75	125
Nitrite (as N)	0.03	mg/L	<0.03			0	20	101	90	110	101	75	125
Anions by IC - QCBatchID: DIO0275-APR22													
Nitrate (as N)	0.06	mg/L	<0.06			ND	20	100	90	110	100	75	125
Nitrite (as N)	0.03	mg/L	<0.03			ND	20	93	90	110	95	75	125
Chemical Oxygen Demand - QCBatchID: EWL0268-APR2	2												
Chemical Oxygen Demand	8	mg/L	<8			0	20	108	80	120	97	75	125

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report: Blandford Bland

				Inc	rganic Analys	is								
Parameter	Reporting				Dupl	icate		LC	S / Spike Blan	k	Matrix Spike / Reference Material			
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery I	imits (%)	Spike Recovery (%)	Recovery Limits (%)		
							%		Low	High		Low	High	
Chemical Oxygen Demand - QCBatchID: EWL0269-A	APR22													
Chemical Oxygen Demand	8	mg/L	<8			ND	20	118	80	120	110	75	125	
Conductivity - QCBatchID: EWL0285-APR22														
Conductivity	2	uS/cm	< 2			0	20	97	90	110	NA			
Mercury by CVAAS - QCBatchID: EHG0031-APR22														
Mercury (dissolved)	0.00001	mg/L	< 0.00001			ND	20	117	80	120	97	70	130	
Metals in aqueous samples - ICP-MS - QCBatchID: E	MS0121-APR22													
Arsenic (dissolved)	0.0002	mg/L	<0.0002			6	_	101	90	110	111	70	130	
Barium (dissolved)	0.00002	mg/L	<0.00002			0	20	100	90	110	95	70	130	
Boron (dissolved)	0.002	mg/L	<0.002			1	20	94	90	110	94	70	130	
Cadmium (dissolved)	0.000003	mg/L	<0.000003			ND	20	105	90	110	87	70	130	
Calcium (dissolved)	0.01	mg/L	<0.01			3	20	100	90	110	81	70	130	
Chromium (dissolved)	0.00008	mg/L	<0.00008			10	20	101	90	110	79	70	130	
Copper (dissolved)	0.0002	mg/L	<0.0002			1	20	103	90	110	101	70	130	
Iron (dissolved)	0.007	mg/L	<0.007			0	20	102	90	110	125	70	130	
Lead (dissolved)	0.00009	mg/L	<0.00001			2	20	96	90	110	78	70	130	
Magnesium (dissolved)	0.001	mg/L	<0.001			2	20	99	90	110	97	70	130	
Manganese (dissolved)	0.00001	mg/L	<0.00001			0	20	103	90	110	103	70	130	
Potassium (dissolved)	0.009	mg/L	<0.009			2	20	99	90	110	102	70	130	
Sodium (dissolved)	0.01	mg/L	<0.01			5	20	100	90	110	100	70	130	
Zinc (dissolved)	0.002	mg/L	<0.002			12	20	103	90	110	104	70	130	
pH - QCBatchID: EWL0285-APR22														
pH	0.05	No unit	NA			0		100			NA			
Phenols by SFA - QCBatchID: SKA0154-APR22				•		<u> </u>			'					
4AAP-Phenolics	0.002	mg/L	<0.002			ND	10	111	80	120	NV	75	125	
Phosphorus by SFA - QCBatchID: SKA0011-MAY22				•	•				· · · · · · · · · · · · · · · · · · ·					
Phosphorus (total)	0.03	mg/L	< 0.03			ND	10	100	90	110	94	75	125	
Phosphorus by SFA - QCBatchID: SKA0035-MAY22	'				•	•	·					· ·		
Phosphorus (total)	0.03	mg/L	< 0.03			1	10	105	90	110	NV	75	125	
Solids Analysis - QCBatchID: EWL0241-APR22	· · · · · · · · · · · · · · · · · · ·	Ţ,		•	'		'	<u>'</u>	'	<u>'</u>		<u>'</u>		
Total Dissolved Solids	30	mg/L	<30			6	20	101	80	120	NA			
Solids Analysis - QCBatchID: EWL0262-APR22		,			'	l	'		,			<u>'</u>		
Total Dissolved Solids	30	mg/L	<30			5	20	95	80	120	NA			
Total Nitrogen - QCBatchID: SKA0124-APR22														
Total Kjeldahl Nitrogen	0.5	as N mg/L	<0.5			4	10	105	90	110	80	75	125	
Total Nitrogen - QCBatchID: SKA0138-APR22		<i>y</i> .			1									
Total Kjeldahl Nitrogen	0.5	as N mg/L	<0.5		1	ND	10	105	90	110	105	75	125	

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

WSP Canada Inc.

Attn: Albert Siertsema

55 King Street, Suite 700, St. Catharines

Canada, L2R 3H5

Phone: 905-687-1771 x 240, Fax:

Project: 191-06761-02-100-1002,

Gunn's Hill Landfill Site - GW

06-May-2022

Date Rec.: 12 April 2022 LR Report: CA40214-APR22

Reference: 191-06761-02-100-1002,

Albert Siertsema

Copy: 1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis	2: Analysis	3: Analysis	4: Analysis	5: RL	6: GH-P1
	Start Date	Start Time	Completed	Completed	IX.L	GIFF
			Date	Time		
Sample Date & Time						11-Apr-22 12:45
Temp Upon Receipt [°C]	***	***	***	***	***	***
pH [No unit]	13-Apr-22	13:16	13-Apr-22	15:44	0.05	8.04
Conductivity [uS/cm]	13-Apr-22	13:16	13-Apr-22	15:44	2	462
Alkalinity [mg/L as CaCO3]	13-Apr-22	13:16	13-Apr-22	15:44	2	254
DOC [mg/L]	27-Apr-22	14:27	06-May-22	10:02		1.0
CI [mg/L]	16-Apr-22	12:51	19-Apr-22	15:20	1	2
SO4 [mg/L]	20-Apr-22	07:07	26-Apr-22	16:57	2	16
NO2 [as N mg/L]	14-Apr-22	20:21	19-Apr-22	14:44	0.03	< 0.03
NO3 [as N mg/L]	14-Apr-22	20:21	19-Apr-22	14:44	0.06	< 0.06
4AAP-Phenolics [mg/L]	18-Apr-22	10:37	19-Apr-22	11:02	0.002	< 0.002
Total P [mg/L]	27-Apr-22	14:23	28-Apr-22	11:14	0.03	< 0.03
Hg (diss) [mg/L]	18-Apr-22	08:03	18-Apr-22	11:30	1e-005	< 0.00001
Ca (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18	0.01	61.9
Mg (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18	0.001	22.9
Na (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18	0.01	15.0
K (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18	0.009	1.07
Hardness [mg/L as CaCO3]	18-Apr-22	21:30	19-Apr-22	10:18		249
As (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		0.0054
Ba (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		0.131
B (diss) [mg/L]	18-Apr-22	21:30	25-Apr-22	11:44		0.052
Cd (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		0.000003
Cr (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		0.00022
Cu (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		0.0017
Fe (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		1.43
Pb (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		< 0.00009
Mn (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		0.0268

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report: Gun's Hill Landfill Site - GW

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: RL	6: GH-P1
Zn (diss) [mg/L]	18-Apr-22	21:30	19-Apr-22	10:18		0.007
TDS [mg/L]	13-Apr-22	08:58	18-Apr-22	13:16	30	223
COD [mg/L]	14-Apr-22	08:00	18-Apr-22	12:55	8	< 8
TKN [as N mg/L]	13-Apr-22	16:05	14-Apr-22	11:17	0.5	< 0.5
NH3+NH4 [as N mg/L]	13 Apr 22	20:45	14-Apr-22	10:58	0.1	0.3
Benzene [ug/L]	20-Apr-22	18:22	26-Apr-22	13:55		< 0.5
1,4-Dichlorobenzene [µg/L]	20-Apr-22	18:22	26-Apr-22	13:55		< 0.5
Dichloromethane [µg/L]	20-Apr-22	18:22	26-Apr-22	13:55		< 0.5
Toluene [ug/L]	20-Apr-22	18:22	26-Apr-22	13:55		< 0.5
Vinyl Chloride [µg/L]	20-Apr-22	18:22	26-Apr-22	13:55		< 0.2

Analysis	7:	8:	9:	10:	11:	
	GH-P2	GH-P3A	GH-P3B	GH-GWDUP	Trip Blank	
Sample Date & Time	11-Apr-22 14:30	11-Apr-22 13:20	11-Apr-22 13:45	11-Apr-22	11-Apr-22	
Temp Upon Receipt [°C]	***	***	***	***	***	
pH [No unit]	8.00	8.04	8.01	8.11		
Conductivity [uS/cm]	493	517	525	462		
Alkalinity [mg/L as CaCO3]	267	244	246	250		
DOC [mg/L]	< 1.0	< 1.0	1.3	1.0		
CI [mg/L]	4	8	8	3		
SO4 [mg/L]	18	54	54	11		
NO2 [as N mg/L]	< 0.03	< 0.03	< 0.03	< 0.03		
NO3 [as N mg/L]	< 0.06	< 0.06	0.56	< 0.06		
4AAP-Phenolics [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002		
Total P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03		
Hg (diss) [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001		
Ca (diss) [mg/L]	65.4	78.9	74.8	61.3		
Mg (diss) [mg/L]	24.0	24.3	23.5	22.0		
Na (diss) [mg/L]	15.2	4.04	3.83	15.3		
K (diss) [mg/L]	1.20	1.02	0.968	1.07		
Hardness [mg/L as CaCO3]	262	297	284	244		
As (diss) [mg/L]	0.0004	0.0028	0.0046	0.0058		
Ba (diss) [mg/L]	0.179	0.186	0.194	0.136		
B (diss) [mg/L]	0.050	0.009	0.019	0.062		
Cd (diss) [mg/L]	< 0.000003	0.000003	< 0.000003	0.000003		
Cr (diss) [mg/L]	0.00009	0.00024	0.00010	0.00014		
Cu (diss) [mg/L]	0.0019	0.0029	0.0012	0.0006		
Fe (diss) [mg/L]	1.10	1.00	1.05	1.38		
Pb (diss) [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009		
Mn (diss) [mg/L]	0.0223	0.0527	0.0341	0.0269		

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report : Gunn's Hill Landfill Site - GW

Analysis	7:	8:	9:	10:	11:	
	GH-P2	GH-P3A	GH-P3B	GH-GWDUP	Trip Blank	
Zn (diss) [mg/L]	< 0.002	0.018	0.026	0.006		
TDS [mg/L]	260	337	303	234		
COD [mg/L]	< 8	< 8	8	9		
TKN [as N mg/L]	< 0.5	< 0.5	< 0.5	< 0.5		
NH3+NH4 [as N mg/L]	0.2	< 0.1	< 0.1	0.2		
Benzene [ug/L]	< 0.5	< 0.5	< 0.5		< 0.5	
1,4-Dichlorobenzene [µg/L]	< 0.5	< 0.5	< 0.5		< 0.5	
Dichloromethane [µg/L]	< 0.5	< 0.5	< 0.5		< 0.5	
Toluene [ug/L]	< 0.5	< 0.5	< 0.5		< 0.5	
Vinyl Chloride [µg/L]	< 0.2	< 0.2	< 0.2		< 0.2	

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Method Descriptions

Parameter	Description	SGS Method Code
1,4-Dichlorobenzene	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
4AAP-Phenolics	phenol by Skalar -solution	ME-CA-[ENV]SFA-LAK-AN-006
Alkalinity	Alkalinity by Titration	ME-CA-[ENV]EWL-LAK-AN-006
Ammonia+Ammonium (N)	NH3+NH4 by Skalar - solution	ME-CA-[ENV]SFA-LAK-AN-007
Arsenic (dissolved)	As by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Barium (dissolved)	Ba by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Benzene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004
Boron (dissolved)	B by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Cadmium (dissolved)	Cd by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Calcium (dissolved)	Ca by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Chemical Oxygen Demand	Chemical Oxygen Demand	ME-CA-[ENV]EWL-LAK-AN-009
Chloride	Chloride by discrete colourmetric analysis	ME-CA-[ENV]EWL-LAK-AN-026
Chromium (dissolved)	Cr by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Conductivity	Conductivity by Conductivity Meter	ME-CA-[ENV]EWL-LAK-AN-006
Copper (dissolved)	Cu by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Dichloromethane	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
Dissolved Organic Carbon	DOC by Combustion/Oxidation	ME-CA-[ENV]EWL-LAK-AN-023
Hardness (dissolved)	Hardness (CaCO3) by ICP-MS dissolved	ME-CA-[ENV]SPE-LAK-AN-006
Iron (dissolved)	Fe by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Lead (dissolved)	Pb by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Magnesium (dissolved)	Mg by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Manganese (dissolved)	Mn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
Mercury (dissolved)	Hg solutions by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004
Nitrate (as N)	Nitrate by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Nitrite (as N)	Nitrite by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
рН	pH - solution	ME-CA-[ENV]EWL-LAK-AN-006
Phosphorus (total)	Total Phos. By Skalar - complete digestion	ME-CA-[ENV]SFA-LAK-AN-003
Potassium (dissolved)	K by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report: Gunn's Hill Landfill Site - GW

Parameter	Description	SGS Method Code					
Sodium (dissolved)	Na by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Sulphate	Sulphate by discrete colourmetric analysis	ME-CA-[ENV]EWL-LAK-AN-026					
Toluene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004					
Total Dissolved Solids	Total Dissolved Solids by Gravimetric	ME-CA-[ENV]EWL-LAK-AN-005					
Total Kjeldahl Nitrogen	Tot. kjeldahl Nitrogen by Skalar	ME-CA-[ENV]SFA-LAK-AN-002					
Vinyl Chloride	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004					
Zinc (dissolved)	Zn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					

Maarit Wolfe, Hon.B.Sc

Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, Gunn's Hill Landfill

LR Report : SiteCA 1214-APR22

Quality Control Report

				Oı	ganic Analysi	s								
Parameter	Reporting	Unit	Method		Dupl	icate		LC	S / Spike Blan	k	Matrix Spike / Reference Ma			
	Limit		Blank	Result 1	Result 2	Result 2 RPD	Acceptance Criteria	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery (%)	Recovery Limits (%)		
							%		Low	High		Low	High	
Volatile Organics - QCBatchID: GCM0339-APR22														
1,4-Dichlorobenzene	0.5	ug/L	<0.5			ND	30	91	60	130	93	50	140	
Benzene	0.5	ug/L	<0.5			ND	30	90	60	130	94	50	140	
Dichloromethane	0.5	ug/L	<0.5			ND	30	89	60	130	88	50	140	
Toluene	0.5	ug/L	<0.5			ND	30	90	60	130	92	50	140	
Vinyl Chloride	0.2	ug/L	<0.2			ND	30	90	50	140	92	50	140	
				Inc	rganic Analys	is								
Parameter	Reporting	Unit	Method		Dupl	icate		LC	S / Spike Blan	k	Matrix Spik	ke / Reference	Material	
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery I	_imits (%)	Spike Recovery Limits (% Recovery (%)		imits (%)	
							%		Low	High		Low	High	
Alkalinity - QCBatchID: EWL0248-APR22														
Alkalinity	2	mg/L as Ca	< 2			2	20	102	80	120	NA			
Ammonia by SFA - QCBatchID: SKA0125-APR22														
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			0	10	96	90	110	98	75	125	
Anions by discrete analyzer - QCBatchID: DIO5048-APR22														
Chloride	1	mg/L	<1			2	20	106	80	120	112	75	125	
Anions by discrete analyzer - QCBatchID: DIO5057-APR22	2													
Chloride	1	mg/L	<1			0	20	111	80	120	114	75	125	
Anions by discrete analyzer - QCBatchID: DIO5063-APR22	2													
Sulphate	2	mg/L	<2			ND	20	110	80	120	123	75	125	
Anions by discrete analyzer - QCBatchID: DIO5077-APR22														
Sulphate	2	mg/L	<2			1	20	102	80	120	93	75	125	
Anions by IC - QCBatchID: DIO0263-APR22														
Nitrate (as N)	0.06	mg/L	<0.06			0	20	99	90	110	97	75	125	
Nitrite (as N)	0.03	mg/L	<0.03			ND	20	98	90	110	99	75	125	
Anions by IC - QCBatchID: DIO0269-APR22														
Nitrate (as N)	0.06	mg/L	<0.06			0	20	98	90	110	116	75	125	
Nitrite (as N)	0.03	mg/L	< 0.03			ND	20	100	90	110	124	75	125	
Chemical Oxygen Demand - QCBatchID: EWL0268-APR2	2													
Chemical Oxygen Demand	8	mg/L	<8			0	20	108	80	120	97	75	125	
Chemical Oxygen Demand - QCBatchID: EWL0269-APR2	2													
Chemical Oxygen Demand	8	mg/L	<8			ND	20	118	80	120	110	75	125	
Conductivity - QCBatchID: EWL0248-APR22														
Conductivity	2	uS/cm	< 2			0	20	98	90	110	NA			
Mercury by CVAAS - QCBatchID: EHG0031-APR22														

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, Gunn's Hill Landfill

Site_{CA}G0214-APR22 LR Report :

Parameter	Reporting Limit	Unit	Method Blank	Result 1	Dupl	icate		LC	S / Spike Blan	k	Matrix Spik	e / Reference	Material
			Blank	Pocult 1							mann op.	Material	
				ixesuit i	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery L	. ,	Spike Recovery (%)	Recovery L	. ,
							%		Low	High		Low	High
Mercury (dissolved)	0.00001	mg/L	< 0.00001			ND	20	117	80	120	97	70	130
Metals in aqueous samples - ICP-MS - QCBatchID: EMS01.													
Arsenic (dissolved)	0.0002	mg/L	<0.0002			6	20	101	90	110	111	70	130
Barium (dissolved)	0.00002	mg/L	<0.00002			0	20	100	90	110	95	70	130
Boron (dissolved)	0.002	mg/L	<0.002			1	20	94	90	110	94	70	130
Cadmium (dissolved)	0.000003	mg/L	<0.000003			ND	20	105	90	110	87	70	130
Calcium (dissolved)	0.01	mg/L	<0.01			3	20	100	90	110	81	70	130
Chromium (dissolved)	0.00008	mg/L	<0.00008			10	20	101	90	110	79	70	130
Copper (dissolved)	0.0002	mg/L	<0.0002			1	20	103	90	110	101	70	130
Iron (dissolved)	0.007	mg/L	<0.007			0	20	102	90	110	125	70	130
Lead (dissolved)	0.00009	mg/L	<0.00001			2	20	96	90	110	78	70	130
Magnesium (dissolved)	0.001	mg/L	<0.001			2	20	99	90	110	97	70	130
Manganese (dissolved)	0.00001	mg/L	<0.00001			0	20	103	90	110	103	70	130
Potassium (dissolved)	0.009	mg/L	< 0.009			2	20	99	90	110	102	70	130
Sodium (dissolved)	0.01	mg/L	<0.01			5	20	100	90	110	100	70	130
Zinc (dissolved)	0.002	mg/L	<0.002			12	20	103	90	110	104	70	130
Metals in aqueous samples - ICP-MS - QCBatchID: EMS01	185-APR22			•							<u> </u>		
Boron (dissolved)	0.002	mg/L	<0.002			5	20	93	90	110	99	70	130
pH - QCBatchID: EWL0248-APR22	'		•	<u> </u>							<u> </u>		
pH	0.05	No unit	NA			NV		100			NA		
Phenols by SFA - QCBatchID: SKA0165-APR22										•	<u> </u>		
4AAP-Phenolics	0.002	mg/L	<0.002			ND	10	97	80	120	NV	75	125
Phosphorus by SFA - QCBatchID: SKA0282-APR22			•	•									
Phosphorus (total)	0.03	mg/L	<0.03			4	10	100	90	110	100	75	125
Solids Analysis - QCBatchID: EWL0241-APR22			•					'					
Total Dissolved Solids	30	mg/L	<30			6	20	101	80	120	NA		
Total Nitrogen - QCBatchID: SKA0124-APR22								· '					
Total Kjeldahl Nitrogen	0.5	as N mg/L	<0.5			4	10	105	90	110	80	75	125

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

WSP Canada Inc.

Attn: Albert Siertsema

55 King Street, Suite 700 St. Catharines, ON L2R 3H5, Canada

Phone: 905-687-1771 x 240

Fax:

Project: 191-06761-02-100-1002,

Blandford-Blenheim Landfill

Site GW

17-November-2022

Date Rec.: 20 October 2022 LR Report: CA40152-OCT22

Reference: 191-06761-02-100-1002,

Albert Siertsema

Copy: 1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:
·	Analysis Start Date	Analysis Start Time	Analysis Completed Date	Analysis Completed Time	BB-MW1	BB-MW2
Sample Date & Time					18-Oct-22 11:43	18-Oct-22 13:10
Temp Upon Receipt [°C]	***	***	***	***	***	***
BOD5 [mg/L]	20-Oct-22	17:08	25-Oct-22	13:33		
TSS [mg/L]	21-Oct-22	14:28	24-Oct-22	16:13		
TDS [mg/L]	20-Oct-22	08:48	21-Oct-22	17:05	574	394
pH [No unit]	20-Oct-22	09:28	24-Oct-22	15:02	8.16	8.09
Conductivity [uS/cm]	20-Oct-22	09:28	24-Oct-22	15:02	1080	627
Alkalinity [mg/L as CaCO3]	20-Oct-22	09:28	24-Oct-22	15:02	498	231
COD [mg/L]	25-Oct-22	06:16	27-Oct-22	12:01	23	< 8
CI [mg/L]	13-Nov-22	17:43	17-Nov-22	14:56	79	37
SO4 [mg/L]	13-Nov-22	17:43	17-Nov-22	14:56	24	82
NO2 [as N mg/L]	24-Oct-22	07:00	31-Oct-22	13:55	< 0.03	0.11
NO3 [as N mg/L]	24-Oct-22	07:00	31-Oct-22	13:55	< 0.06	0.45
NO2+NO3 [as N mg/L]	24-Oct-22	07:00	31-Oct-22	13:55	< 0.06	0.55
DOC [mg/L]	25-Oct-22	20:25	26-Oct-22	13:19	8	3
TKN [as N mg/L]	24-Oct-22	17:45	25-Oct-22	14:48	16.2	< 0.5
NH3+NH4 [as N mg/L]	25-Oct-22	18:34	26-Oct-22	14:01	15.2	0.1
Total P [mg/L]	21-Oct-22	12:31	27-Oct-22	08:27	0.26	< 0.03
4AAP-Phenolics [mg/L]	20-Oct-22	08:08	24-Oct-22	09:46	0.002	< 0.002
Hg (diss) [mg/L]	21-Oct-22	08:39	21-Oct-22	12:30	< 0.00001	< 0.00001
Ca (diss) [mg/L]	26-Oct-22	12:00	03-Nov-22	12:51	101	73.6
Mg (diss) [mg/L]	26-Oct-22	12:00	03-Nov-22	12:51	37.4	23.8
Na (diss) [mg/L]	26-Oct-22	12:00	03-Nov-22	12:51	29.0	3.85
K (diss) [mg/L]	26-Oct-22	12:00	03-Nov-22	12:51	9.69	1.16
As (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	0.0003	0.0007
Ba (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	0.358	0.0613
B (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	0.103	0.007

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report: Blandford-Blenheim Landfill CA40152-0C122

Analysis	1:	2:	3:	4:	5:	6:
	Analysis Start Date	Analysis Start Time	Analysis Completed Date	Analysis Completed Time	BB-MW1	BB-MW2
Cd (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	< 0.000003	< 0.000003
Cr (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	0.00044	0.00013
Cu (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	< 0.0002	< 0.0002
Fe (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	3.28	0.095
Pb (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	< 0.00009	< 0.00009
Mn (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	0.0636	0.0190
Zn (diss) [mg/L]	26-Oct-22	12:00	28-Oct-22	17:03	< 0.002	< 0.002
Benzene [ug/L]	21-Oct-22	11:30	07-Nov-22	15:46	< 0.5	< 0.5
1,4-Dichlorobenzene [µg/L]	21-Oct-22	11:30	07-Nov-22	15:46	< 0.5	< 0.5
Dichloromethane [µg/L]	21-Oct-22	11:30	07-Nov-22	15:46	< 0.5	< 0.5
Toluene [ug/L]	21-Oct-22	11:30	07-Nov-22	15:46	< 0.5	< 0.5
Vinyl Chloride [µg/L]	21-Oct-22	11:30	07-Nov-22	15:46	< 0.2	< 0.2

Analysis	7:	8:	9:	10:	11:
	BB-MW3	BB-BH1-1	BB-BH1-2 E	BB-GW DUP	Trip Blank
Sample Date & Time	18-Oct-22 12:30	18-Oct-22 14:00	18-Oct-22 14:15	18-Oct-22	18-Oct-22
Temp Upon Receipt [°C]	***	***	***	***	***
BOD5 [mg/L]		< 4	28		
TSS [mg/L]		238	1590		
TDS [mg/L]	206			546	
pH [No unit]	8.16			8.16	
Conductivity [uS/cm]	372			1100	
Alkalinity [mg/L as CaCO3]	202			491	
COD [mg/L]	< 8			23	
CI [mg/L]	0.9			76	
SO4 [mg/L]	3.5			25	
NO2 [as N mg/L]	< 0.03			< 0.03	
NO3 [as N mg/L]	0.32			< 0.06	
NO2+NO3 [as N mg/L]	0.32			< 0.06	
DOC [mg/L]	< 1			8	
TKN [as N mg/L]	< 0.5			16.4	
NH3+NH4 [as N mg/L]	< 0.1			15.3	
Total P [mg/L]	0.06			0.30	
4AAP-Phenolics [mg/L]	< 0.002			0.003	
Hg (diss) [mg/L]	< 0.00001			< 0.00001	
Ca (diss) [mg/L]	52.3			95.6	
Mg (diss) [mg/L]	8.97			35.4	
Na (diss) [mg/L]	4.50			27.9	
K (diss) [mg/L]	0.652			9.25	
As (diss) [mg/L]	0.0003			0.0002	

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report : Blandford-Blanheim Landfill Site GW

Analysis	7:	8:	9:	10:	11:
	BB-MW3	BB-BH1-1	BB-BH1-2 I	BB-GW DUP	Trip Blank
Ba (diss) [mg/L]	0.00835			0.380	
B (diss) [mg/L]	0.005			0.108	
Cd (diss) [mg/L]	0.000010			0.000003	
Cr (diss) [mg/L]	0.00037			0.00040	
Cu (diss) [mg/L]	0.0006			< 0.0002	
Fe (diss) [mg/L]	< 0.007			3.12	
Pb (diss) [mg/L]	< 0.00009			< 0.00009	
Mn (diss) [mg/L]	0.00041			0.0602	
Zn (diss) [mg/L]	< 0.002			< 0.002	
Benzene [ug/L]	< 0.5	< 0.5			< 0.5
1,4-Dichlorobenzene [µg/L]	< 0.5	< 0.5			< 0.5
Dichloromethane [µg/L]	< 0.5	< 0.5			< 0.5
Toluene [ug/L]	< 0.5	< 0.5			< 0.5
Vinyl Chloride [μg/L]	< 0.2	< 0.2			< 0.2

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: N/A

Method Descriptions

	·	
Units	Description	SGS Method Code
ug/L	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
mg/L	phenol by Skalar -solution	ME-CA-[ENV]SFA-LAK-AN-006
mg/L as CaCO3	Alkalinity by Titration	ME-CA-[ENV]EWL-LAK-AN-006
as N mg/L	NH3+NH4 by Skalar - solution	ME-CA-[ENV]SFA-LAK-AN-007
mg/L	As by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Ba by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
ug/L	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004
mg/L	Biochemical Oxygen Demand (BOD5)	ME-CA-[ENV]EWL-LAK-AN-007
mg/L	B by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Cd by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Ca by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Chemical Oxygen Demand	ME-CA-[ENV]EWL-LAK-AN-009
mg/L	Chloride by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
mg/L	Cr by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
uS/cm	Conductivity by Conductivity Meter	ME-CA-[ENV]EWL-LAK-AN-006
mg/L	Cu by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
ug/L	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
mg/L	DOC by Skalar	ME-CA-[ENV]SFA-LAK-AN-009
mg/L	Fe by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Pb by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Mg by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Mn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Hg solutions by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004
mg/L	Nitrate by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
mg/L	Total Nitrate/Nitrite by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
mg/L	Nitrite by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
No unit	pH - solution	ME-CA-[ENV]EWL-LAK-AN-006
mg/L	Total Phos. By Skalar - complete digestion	ME-CA-[ENV]SFA-LAK-AN-003
mg/L	K by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006
mg/L	Na by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report : Blandford-Blenheim Landfill Site GW

Units	Description	SGS Method Code
mg/L	Sulphate by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
ug/L	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004
mg/L	Total Dissolved Solids by Gravimetric	ME-CA-[ENV]EWL-LAK-AN-005
as N mg/L	Tot. kjeldahl Nitrogen by Skalar	ME-CA-[ENV]SFA-LAK-AN-002
mg/L	Total Suspended Solids	ME-CA-[ENV]EWL-LAK-AN-004
ug/L	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004
mg/L	Zn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006

Maarit Wolfe, Hon.B.Sc

Project Specialist,

Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report : Blandforfs Bloom Landfill Site GW

Quality Control Report

				Or	ganic Analysi	s							
Parameter	Reporting	Unit	Method		·	icate		LC	S / Spike Blan	ık	Matrix Spik	ce / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery I		Spike Recovery (%)	Recovery L	
							%		Low	High		Low	High
Volatile Organics - QCBatchID: GCM0294-OCT22													
1,4-Dichlorobenzene	0.5	ug/L	<0.5			ND	30	98	60	130	98	50	140
Benzene	0.5	ug/L	<0.5			ND	30	102	60	130	100	50	140
Dichloromethane	0.5	ug/L	<0.5			ND	30	98	60	130	99	50	140
Toluene	0.5	ug/L	<0.5			ND	30	103	60	130	100	50	140
Vinyl Chloride	0.2	ug/L	<0.2			ND	30	110	50	140	108	50	140
Volatile Organics - QCBatchID: GCM0392-OCT22													
1,4-Dichlorobenzene	0.5	ug/L	<0.5			ND	30	98	60	130	97	50	140
Benzene	0.5	ug/L	<0.5			ND	30	100	60	130	101	50	140
Dichloromethane	0.5	ug/L	<0.5			ND	30	95	60	130	103	50	140
Toluene	0.5	ug/L	<0.5			ND	30	98	60	130	101	50	140
Vinyl Chloride	0.2	ug/L	<0.2			ND	30	107	50	140	113	50	140
				Ino	rganic Analys	is							
Parameter	Reporting	Unit	Method		Dupl	icate		LC	S / Spike Blan	ık	Matrix Spike / Refere		Material
	Limit		Blank Res	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery I	Limits (%)	Spike Recovery (%)	Recovery L	imits (%)
							%		Low	High		Low	High
Alkalinity - QCBatchID: EWL0464-OCT22				•							<u> </u>		
Alkalinity	2	mg/L as Ca	< 2			2	20	104	80	120	NA		
Ammonia by SFA - QCBatchID: SKA0249-OCT22													
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			ND	10	100	90	110	94	75	125
Ammonia by SFA - QCBatchID: SKA0262-OCT22													
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			0	10	102	90	110	83	75	125
Anions by IC - QCBatchID: DIO0310-NOV22													
Chloride	0.2	mg/L	<0.2			ND	20	99	90	110	107	75	125
Sulphate	0.2	mg/L	<0.2			2	20	96	90	110	98	75	125
Anions by IC - QCBatchID: DIO0393-NOV22													
Chloride	0.2	mg/L	<0.2			ND	20	97	90	110	98	75	125
Sulphate	0.2	mg/L	<0.2			1	20	92	90	110	88	75	125
Anions by IC - QCBatchID: DIO0468-OCT22													
Nitrate (as N)	0.06	mg/L	<0.06			ND	20	98	90	110	99	75	125
Nitrate + Nitrite (as N)	0.06	mg/L	<0.06			NA		NA			NA		
Nitrite (as N)	0.03	mg/L	< 0.03			ND	20	98	90	110	102	75	125
Biochemical Oxygen Demand - QCBatchID: BOD0043-C	CT22			•					,				
Biochemical Oxygen Demand (BOD5)	2	mg/L	< 2			10	30	96	70	130	NV	70	130
Carbon by SFA - QCBatchID: SKA0260-OCT22													

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report : Blandfagt Bloche im Landfill Site GW

				Inc	organic Analys	is							
Parameter	Reporting	Unit	Method		Dupl	licate		LC:	S / Spike Blank		Matrix Spik	ke / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery (%)	Recovery L	Limits (%)
							%		Low	High		Low	High
Dissolved Organic Carbon	1	mg/L	<1			2	20	103	90	110	104	75	125
Chemical Oxygen Demand - QCBatchID: EWL0557-OC	T22												
Chemical Oxygen Demand	8	mg/L	<8			ND	20	96	80	120	95	75	125
Chemical Oxygen Demand - QCBatchID: EWL0558-OC	T22												
Chemical Oxygen Demand	8	mg/L	<8			2	20	96	80	120	102	75	125
Conductivity - QCBatchID: EWL0464-OCT22							•					•	
Conductivity	2	uS/cm	< 2			0	20	98	90	110	NA		
Mercury by CVAAS - QCBatchID: EHG0038-OCT22			•	•	•	•	•				<u> </u>		
Mercury (dissolved)	0.00001	mg/L	< 0.00001			ND	20	90	80	120	NV	70	130
Metals in aqueous samples - ICP-MS - QCBatchID: EMS	S0177-OCT22		•		•			•	·		<u> </u>		
Arsenic (dissolved)	0.0002	mg/L	<0.0002			1	20	100	90	110	100	70	130
Barium (dissolved)	0.00008	mg/L	<0.00002			1	20	102	90	110	103	70	130
Boron (dissolved)	0.002	mg/L	<0.002			14	20	91	90	110	82	70	130
Cadmium (dissolved)	0.000003	mg/L	<0.000003			20	20	99	90	110	125	70	130
Calcium (dissolved)	0.01	mg/L	<0.01			2	20	96	90	110	94	70	130
Chromium (dissolved)	0.00008	mg/L	<0.00008			6	20	100	90	110	109	70	130
Copper (dissolved)	0.0002	mg/L	<0.0002			1	20	98	90	110	113	70	130
Iron (dissolved)	0.007	mg/L	< 0.007			11	20	99	90	110	108	70	130
Lead (dissolved)	0.00009	mg/L	<0.00001			6	20	101	90	110	109	70	130
Magnesium (dissolved)	0.001	mg/L	<0.001			1	20	97	90	110	91	70	130
Manganese (dissolved)	0.00001	mg/L	<0.00001			1	20	98	90	110	106	70	130
Potassium (dissolved)	0.009	mg/L	<0.009			2	20	98	90	110	89	70	130
Sodium (dissolved)	0.01	mg/L	<0.01			2	20	95	90	110	92	70	130
Zinc (dissolved)	0.002	mg/L	<0.002			3	20	97	90	110	108	70	130
pH - QCBatchID: EWL0464-OCT22			•		'	'	'		'		<u> </u>		
pH	0.05	No unit	NA			0		100			NA		
Phenols by SFA - QCBatchID: SKA0214-OCT22			•		1		'		<u>'</u>				
4AAP-Phenolics	0.002	mg/L	<0.002			9	10	101	80	120	99	75	125
Phenols by SFA - QCBatchID: SKA0233-OCT22								L					
4AAP-Phenolics	0.002	mg/L	<0.002			ND	10	107	80	120	124	75	125
Phosphorus by SFA - QCBatchID: SKA0232-OCT22				ı	ı			I					
Phosphorus (total)	0.03	mg/L	<0.03			ND	10	101	90	110	97	75	125
Phosphorus by SFA - QCBatchID: SKA0266-OCT22			•			'							
Phosphorus (total)	0.03	mg/L	<0.03			1	10	101	90	110	92	75	125
Solids Analysis - QCBatchID: EWL0461-OCT22		<u> </u>										<u> </u>	
Total Dissolved Solids	30	mg/L	<30			4	20	97	80	120	NA		
Suspended Solids - QCBatchID: EWL0517-OCT22		<u> </u>			1								
Total Suspended Solids	2	mg/L	< 2			5	10	105	90	110	NA		
Total Nitrogen - QCBatchID: SKA0250-OCT22		<u>J</u>	1								**		

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report : Blandfagt Bloche im Landfill Site GW

Inorganic Analysis													
Parameter	Reporting	Unit	Method							e Material			
	Limit		Blank	Result 1 Result 2 RPD Acceptance Spike Recovery Limits (%) Spike Recovery (%)				Recovery	Limits (%)				
							%		Low	High		Low	High
Total Kjeldahl Nitrogen	0.5	as N mg/L	<0.5			5	10	100	90	110	102	75	125

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

WSP Canada Inc.

Attn: Albert Siertsema

55 King Street, Suite 700 St. Catharines, ON L2R 3H5, Canada

Phone: 905-687-1771 x 240

Fax:

Project: 191-06761-02-100-1002,

Blandford-Blenhelm LF Site

GW

05-December-2022

Date Rec.: 28 November 2022 LR Report: CA40332-NOV22

Reference: 191-06761-02-100-1002,

Albert Siertsema

Copy: 1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	3:	5:	6:	7:	8:
	Analysis Start Date	Analysis Completed Date	RL	BB-BH1-1	BB-BH1-2	Trip Blank
Sample Date & Time				25-Nov-22 10:00	25-Nov-22 10:30	25-Nov-22
Temp Upon Receipt [°C]	***	***	***	***	***	***
BOD5 [mg/L]	29-Nov-22	05-Dec-22	2	22	8	
pH [No unit]	29-Nov-22	30-Nov-22	0.05	7.72	7.20	
Conductivity [uS/cm]	29-Nov-22	30-Nov-22	2	687	2100	
Alkalinity [mg/L as CaCO3]	29-Nov-22	30-Nov-22	2	334	1070	
TDS [mg/L]	29-Nov-22	01-Dec-22	30	369	820	
COD [mg/L]	29-Nov-22	05-Dec-22	8	20	131	
DOC [mg/L]	29-Nov-22	01-Dec-22	1.0	1.8	30.5	
CI [mg/L]	01-Dec-22	04-Dec-22	1	15	37	
SO4 [mg/L]	01-Dec-22	05-Dec-22	2	4	<20	
NO2 [as N mg/L]	30-Nov-22	05-Dec-22	0.03	0.07	< 0.3	
NO3 [as N mg/L]	30-Nov-22	05-Dec-22	0.06	0.56	< 0.06	
NO2+NO3 [as N mg/L]	30-Nov-22	05-Dec-22	0.06	0.62	<0.3	
NH3+NH4 [as N mg/L]	29-Nov-22	02-Dec-22	0.1	1.8	100	
TKN [as N mg/L]	29-Nov-22	01-Dec-22	0.5	2.0	99.2	
TSS [mg/L]	29-Nov-22	30-Nov-22	2	89	238	
4AAP-Phenolics [mg/L]	30-Nov-22	30-Nov-22	0.002	0.003	0.016	
Total P [mg/L]	29-Nov-22	01-Dec-22	0.03	0.16	0.58	
Hg (diss) [mg/L]	30-Nov-22	01-Dec-22	1e-005	< 0.00001	< 0.00001	
Ca (diss) [mg/L]	01-Dec-22	02-Dec-22	0.01	111	195	
Mg (diss) [mg/L]	01-Dec-22	02-Dec-22	0.001	18.4	40.7	
Na (diss) [mg/L]	01-Dec-22	02-Dec-22	0.01	3.90	31.9	
K (diss) [mg/L]	01-Dec-22	02-Dec-22	0.009	4.56	60.7	
As (diss) [mg/L]	01-Dec-22	02-Dec-22	0.0002	0.0004	0.0016	
Ba (diss) [mg/L]	01-Dec-22	02-Dec-22	2e-005	0.0561	0.278	
B (diss) [mg/L]	01-Dec-22	02-Dec-22		0.063	0.750	

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report : Blandford Blenhelm LF Site GW

Analysis	1:	3:	5:	6:	7:	8:
	Analysis Start Date	Analysis Completed	RL	BB-BH1-1	BB-BH1-2	Trip Blank
		Date				
Cd (diss) [mg/L]	01-Dec-22	02-Dec-22	0.0001	0.000004	0.000010	
Cr (diss) [mg/L]	01-Dec-22	02-Dec-22	0.003	0.00019	0.00377	
Cu (diss) [mg/L]	01-Dec-22	02-Dec-22	0.001	0.0010	0.0008	
Fe (diss) [mg/L]	01-Dec-22	02-Dec-22		0.08	73.5	
Pb (diss) [mg/L]	01-Dec-22	02-Dec-22	1e-005	< 0.001	< 0.001	
Mn (diss) [mg/L]	01-Dec-22	02-Dec-22		0.852	0.548	
Zn (diss) [mg/L]	01-Dec-22	02-Dec-22	0.002	0.011	0.007	
Benzene [mg/L]	01-Dec-22	02-Dec-22	0.5	< 0.0005	0.0057	< 0.0005
1,4-Dichlorobenzene [mg/L]	01-Dec-22	02-Dec-22	0.5	< 0.0005	0.0032	< 0.0005
Dichloromethane [mg/L]	01-Dec-22	02-Dec-22	0.5	< 0.0005	< 0.0005	< 0.0005
Toluene [mg/L]	01-Dec-22	02-Dec-22	0.5	< 0.0005	0.0012	< 0.0005
Vinyl Chloride [mg/L]	01-Dec-22	02-Dec-22	0.2	< 0.0002	< 0.0002	< 0.0002

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

SO4 for sample 7 RL increased due to sample matrix

Method Descriptions

Parameter	Description	SGS Method Code					
1,4-Dichlorobenzene	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004					
4AAP-Phenolics	phenol by Skalar -solution	ME-CA-[ENV]SFA-LAK-AN-006					
Alkalinity	Alkalinity by Titration	ME-CA-[ENV]EWL-LAK-AN-006					
Ammonia+Ammonium (N)	NH3+NH4 by Skalar - solution	ME-CA-[ENV]SFA-LAK-AN-007					
Arsenic (dissolved)	As by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Barium (dissolved)	Ba by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Benzene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004					
Biochemical Oxygen Demand (BOD5)	Biochemical Oxygen Demand (BOD5)	ME-CA-[ENV]EWL-LAK-AN-007					
Boron (dissolved)	B by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Cadmium (dissolved)	Cd by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Calcium (dissolved)	Ca by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Chemical Oxygen Demand	Chemical Oxygen Demand	ME-CA-[ENV]EWL-LAK-AN-009					
Chloride	Chloride by discrete colourmetric analysis	ME-CA-[ENV]EWL-LAK-AN-026					
Chromium (dissolved)	Cr by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Conductivity	Conductivity by Conductivity Meter	ME-CA-[ENV]EWL-LAK-AN-006					
Copper (dissolved)	Cu by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Dichloromethane	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004					
Dissolved Organic Carbon	DOC by Combustion/Oxidation	ME-CA-[ENV]EWL-LAK-AN-023					
Iron (dissolved)	Fe by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Lead (dissolved)	Pb by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Magnesium (dissolved)	Mg by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Manganese (dissolved)	Mn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006					
Mercury (dissolved)	Hg solutions by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004					
Nitrate (as N)	Nitrate by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001					

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002, LR Report: Blandford-Blenhelm LF Site GW

Parameter	Description	SGS Method Code				
Nitrate + Nitrite (as N)	Total Nitrate/Nitrite by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001				
Nitrite (as N)	Nitrite by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001				
рН	pH - solution	ME-CA-[ENV]EWL-LAK-AN-006				
Phosphorus (total)	Total Phos. By Skalar - complete digestion	ME-CA-[ENV]SFA-LAK-AN-003				
Potassium (dissolved)	K by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006				
Sodium (dissolved)	Na by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006				
Sulphate	Sulphate by discrete colourmetric analysis	ME-CA-[ENV]EWL-LAK-AN-026				
Toluene	VOC wtr - BTEX	ME-CA-[ENV]GC-LAK-AN-004				
Total Dissolved Solids	Total Dissolved Solids by Gravimetric	ME-CA-[ENV]EWL-LAK-AN-005				
Total Kjeldahl Nitrogen	Tot. kjeldahl Nitrogen by Skalar	ME-CA-[ENV]SFA-LAK-AN-002				
Total Suspended Solids	Total Suspended Solids	ME-CA-[ENV]EWL-LAK-AN-004				
Vinyl Chloride	VOC wtr	ME-CA-[ENV]GC-LAK-AN-004				
Zinc (dissolved)	Zn by ICP-MS solution (dissolved)	ME-CA-[ENV]SPE-LAK-AN-006				

Jill Cumpbell

Jill Campbell, B.Sc.,GISAS Project Specialist, Environment, Health & Safety

Phone: 705-652-2000 FAX: 705-652-6365

Project: 191-06761-02-100-1002,

LR Report: Blandforst Blondforst Blondforst

Quality Control Report

				O	ganic Analysi	e									
Parameter Reporting Unit				thod Duplicate					S / Spike Blan	k	Matrix Spike / Reference Material				
, alance.	Limit	Offic	Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery (%)	Recovery Limits (%)			
									Low	High	` ′	Low	High		
Volatile Organics - QCBatchID: GCM0006-DEC22											<u>.</u>				
1,4-Dichlorobenzene	0.0005	mg/L	<0.0005			ND	30	84	60	130	101	50	140		
Benzene	0.0005	mg/L	<0.0005			ND	30	83	60	130	102	50	140		
Dichloromethane	0.0005	mg/L	<0.0005			ND	30	83	60	130	99	50	140		
Toluene	0.0005	mg/L	<0.0005			ND	30	83	60	130	104	50	140		
Vinyl Chloride	0.0002	mg/L	<0.0002			ND	30	74	50	140	94	50	140		
				Inc	rganic Analys	is									
Parameter	Reporting	Unit	Method		Dupl	icate		LC	S / Spike Blan	k	Matrix Spik	ce / Reference	Material		
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery Limits (%)				Spike Recovery (%)	Recovery Limits (%)	
							%		Low	High		Low	High		
Alkalinity - QCBatchID: EWL0646-NOV22															
Alkalinity	2	mg/L as Ca	< 2			3	20	100	80	120	NA				
Ammonia by SFA - QCBatchID: SKA0012-DEC22															
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			0	10	106	90	110	95	75	125		
Ammonia by SFA - QCBatchID: SKA0293-NOV22															
Ammonia+Ammonium (N)	0.1	as N mg/L	<0.1			6	10	104	90	110	97	75	125		
Anions by discrete analyzer - QCBatchID: DIO5003-DE	EC22														
Chloride	1	mg/L	<1			ND	20	107	80	120	114	75	125		
Sulphate	2	mg/L	<2			ND	20	104	80	120	110	75	125		
Anions by discrete analyzer - QCBatchID: DIO5006-DE	EC22														
Sulphate	2	mg/L	<2			1	20	104	80	120	102	75	125		
Anions by IC - QCBatchID: DIO0727-NOV22															
Nitrate (as N)	0.06	mg/L	<0.06			0	20	98	90	110	99	75	125		
Nitrate + Nitrite (as N)	0.06	mg/L	<0.06			NA		NA			NA				
Nitrite (as N)	0.03	mg/L	< 0.03			2	20	94	90	110	96	75	125		
Anions by IC - QCBatchID: DIO0760-NOV22															
Nitrite (as N)	0.03	mg/L	< 0.03			ND	20	97	90	110	94	75	125		
Biochemical Oxygen Demand - QCBatchID: BOD0051	-NOV22														
Biochemical Oxygen Demand (BOD5)	2	mg/L	< 2			6	30	106	70	130	NV	70	130		
Carbon by Combustion/Oxidation - QCBatchID: EWL0	656-NOV22														
Dissolved Organic Carbon	1.0	mg/L	<1.0			ND	20	100	90	110	93	75	125		
Chemical Oxygen Demand - QCBatchID: EWL0638-N	OV22														
Chemical Oxygen Demand	8	mg/L	<8			5	20	104	80	120	103	75	125		
Conductivity - QCBatchID: EWL0646-NOV22															
Conductivity	2	uS/cm	< 2			0	20	100	90	110	NA				

Phone: 705-652-2000 FAX: 705-652-6365

Project : 191-06761-02-100-1002,

LR Report: Blandings Blanding In LF Site GW

				Ino	rganic Analys	is							
Parameter	Reporting Limit	Unit	Method Blank	Duplicate				LCS / Spike Blank			Matrix Spike / Reference Material		
				Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery (%)	Recovery Limits (%)	
							%		Low	High		Low	High
Mercury by CVAAS - QCBatchID: EHG0068-NOV22											<u> </u>	•	
Mercury (dissolved)	0.00001	mg/L	< 0.00001			15	20	108	80	120	120	70	130
Metals in aqueous samples - ICP-MS - QCBatchID: EMS0	0183-NOV22												
Arsenic (dissolved)	0.0002	mg/L	<0.0002			7	20	103	90	110	100	70	130
Barium (dissolved)	0.00008	mg/L	<0.00002			4	20	98	90	110	99	70	130
Boron (dissolved)	0.002	mg/L	<0.002			7	20	109	90	110	101	70	130
Cadmium (dissolved)	0.000003	mg/L	<0.000003			ND	20	105	90	110	106	70	130
Calcium (dissolved)	0.01	mg/L	<0.01			10	20	97	90	110	97	70	130
Chromium (dissolved)	0.00008	mg/L	<0.00008			10	20	103	90	110	101	70	130
Copper (dissolved)	0.0002	mg/L	<0.0002			8	20	104	90	110	97	70	130
Iron (dissolved)	0.01	mg/L	<0.007			11	20	96	90	110	NV	70	130
Lead (dissolved)	0.001	mg/L	<0.00001			ND	20	101	90	110	103	70	130
Magnesium (dissolved)	0.001	mg/L	<0.001			6	20	95	90	110	98	70	130
Manganese (dissolved)	0.002	mg/L	<0.00001			8	20	107	90	110	103	70	130
Potassium (dissolved)	0.009	mg/L	<0.009			9	20	95	90	110	94	70	130
Sodium (dissolved)	0.01	mg/L	<0.01			7	20	91	90	110	98	70	130
Zinc (dissolved)	0.002	mg/L	<0.002			10	20	103	90	110	103	70	130
pH - QCBatchID: EWL0646-NOV22				•							<u> </u>	<u>.</u>	
pH	0.05	No unit	NA			2		100			NA		
Phenols by SFA - QCBatchID: SKA0296-NOV22													
4AAP-Phenolics	0.002	mg/L	<0.002			ND	10	94	80	120	85	75	125
Phosphorus by SFA - QCBatchID: SKA0003-DEC22													
Phosphorus (total)	0.03	mg/L	<0.03			3	10	107	90	110	94	75	125
Solids Analysis - QCBatchID: EWL0636-NOV22													
Total Dissolved Solids	30	mg/L	<30			0	20	100	80	120	NA		
Suspended Solids - QCBatchID: EWL0639-NOV22													
Total Suspended Solids	2	mg/L	< 2			0	10	102	90	110	NA		
Total Nitrogen - QCBatchID: SKA0005-DEC22													
Total Kjeldahl Nitrogen	0.5	as N mg/L	<0.5			2	10	101	90	110	102	75	125
Total Nitrogen - QCBatchID: SKA0291-NOV22													
Total Kjeldahl Nitrogen	0.5	as N mg/L	<0.5			ND	10	107	90	110	92	75	125